
Publ. Math. Debrecen

Supplementum 100 (2022), 683–700

DOI: 10.5486/PMD.2022.Suppl.8

On solving sparse MRHS equations with bit-flipping

By Pavol Zajac

Abstract. We present a new class of probabilistic algorithms that can be used

to solve (sparse) MRHS equation systems. The algorithms are based on the idea of

bit-flipping: start from a random vector as a potential solution, and try to improve

individual bits according to some selected heuristic strategy. We have evaluated a group

of algorithms experimentally on a model of sparse MRHS systems based on AND-XOR

circuits with low gate count. We compare bit-flipping algorithms with a more complex

hill-climbing algorithm and show that bit-flipping algorithms can achieve better success

probability for the same number of MRHS evaluations.

1. Introduction

Modern lightweight cipher designs, such as LowMC [2], and MiMC [1], try

to minimize the number of (specific) logic gates required to realize the encryption

algorithm. Lowered number of gates leads to a more efficient implementation

[6], and a lower power consumption. Furthermore, there are important crypto-

graphic applications of primitives with low number of (non-linear) gates, such as

homomorphic encryption [8], side channel protection [7], MPC [5], and others.

On the other hand, a low number of gates, especially non-linear AND gates,

can have a negative impact on cipher security. In [13] we have investigated

a generic reduction of an algebraic attack to an instance of a decoding prob-

lem. We have provided a lower bound on the number of AND gates required in

the cipher design (relative to the security level) to resist attacks utilizing generic

decoding algorithms.

Mathematics Subject Classification: 94A60, 08-08, 14G50.
Key words and phrases: MRHS, bit-flipping, algebraic cryptanalysis.
This research was sponsored by Slovak Republic under grant VEGA 2/0072/20.

684 P. Zajac

Suppose that a lightweight design has a low number of both AND gates and

XOR gates. Algebraic cryptanalysis of such a design can be transformed into

a multiple right-hand sides (MRHS) equation system [9] with a specific form of

right-hand side sets (RHS) and a sparse joint matrix.

Unlike our prior research in deterministic solving methods [11], [10], in our

present contribution, we investigate heuristic methods for solving sparse MRHS

systems. The main idea of the solving algorithm is an adaptive bit flipping.

We start from a random potential solution, and then we try to change some bits

based on the information obtained from the RHS sets. We investigate different

bit-flipping strategies and their combinations.

We extend the investigation also to bit flipping strategies based on global

information similar to Hill climbing. Our optimization function is the number of

unsolved right-hand sides. Starting with a random potential solution, we evaluate

each potential bit-flip and continue by a greedy strategy: we flip that bit which

provides the best improvement in the number of solved right-hand sides. If no

bit flip leads to a better situation, we restart from another random potential

solution. Note that this approach is different from classical heuristic optimization

approaches to solving ciphers, as it does not work on keyspace bits but instead

works with all internal bits and their interconnections.

2. Preliminaries

Notes on notation: In this article, we always use row vectors. We denote

vectors with small bold letters, such as v. Vector ei contains exactly one value

1 at position i, and 0’s otherwise. Matrices are denoted by capital bold letters

such as M. Sets are denoted by simple capital letters such as S, with special sets

using specific notation such as F (a generic finite field).

Definition 1. Let F be a finite field. Let M be an n × l matrix over F, and
let S ⊂ Fm. MRHS equation is an inclusion in the form

x ·M ∈ S. (1)

Vector x ∈ Fn is a solution of the MRHS equation (1) if the corresponding

inclusion is satisfied.

A MRHS equation system (simplified to a MRHS system) is a set of m

MRHS equations given by matrices M1, . . . ,Mm with the same number of rows

n and corresponding right hand side (RHS) sets S1, . . . , Sm. Vector x ∈ Fn is

On solving sparse MRHS equations with bit-flipping 685

a solution of the MRHS system if it is a solution of each MRHS equation in

the system. When the internal structure of the MRHS system is not important,

we will denote it simply by the symbolM.

Solving MRHS systems is believed to be difficult (in general). We have al-

ready shown that it is an NP-complete problem to decide, whether an MRHS sys-

tem has a solution [12]. There are multiple existing exponential time algorithms

that can solve an MRHS system [9, 10, 11]. These algorithms mainly focus on

an efficient search through the solution space similar to the DPLL algorithm for

solving the SAT problem.

In this paper, we focus on sparse MRHS systems over a finite field F = GF (2).

Definition 2. Let us have a MRHS system consisting of m MRHS equations

given by left-hand side matrices M1, . . . ,Mm, and corresponding right hand side

sets S1, . . . , Sm. We can write the MRHS system in a joint form

x · (M1| · · · |Mm) ∈ S1 × · · · × Sm.

We call left-hand side matrix (M1| · · · |Mm) a joint matrix of the MRHS system.

Joint form of the MRHS system can be understood as a single MRHS equa-

tion defined by a (joint) matrix M = (M1| · · · |Mm) on the left-hand side and

a (large) right-hand side set S = S1 × · · · × Sm. We represent S as a Cartesian

product, because the size of the whole set S grows exponentially with increasing

m.

We say that the MRHS system is sparse if each column of its joint matrix

contains 1 + o(1) non-zero elements. In our experiments, we require that all

columns for each MRHS equation are linearly independent (otherwise its dimen-

sion will degenerate). This means that each column of the joint matrix of the

MRHS system contains at least one non-zero element. The density of the joint

matrix is defined as d = N1−Ncol, where N1 is the number of non-zero elements

of the joint matrix M, and Ncol is the number of columns of M.

We extend the MRHS system notation by adding a constant vector c =

(c1| · · · |cm) to the left-hand side as follows:

x · (M1| · · · |Mm) + (c1| · · · |cm) ∈ S1 × · × Sm. (2)

Constants from the left-hand side can be moved to the right-hand side by

subtracting its parts ci from each vector in Si. However, the addition of a constant

to the left-hand side will allow us to represent an MRHS system with uniform

right-hand side sets Si = S suitable for modeling a computational circuit with

AND gates (sets Si), XOR gates (joint matrix M) and constants (constant c).

686 P. Zajac

It is easy to check, whether vector x is a solution of the (extended) MRHS

system from (2). We can compute vectors ui = x ·Mi+ci. Vector x is a solution

of the MRHS system if and only if each ui ∈ Si. If x is not a solution of the

MRHS system, there exists at least one i such that ui ̸∈ Si. It also means that

even though x is not a solution of the MRHS system, there is a possibility that for

some i, ui ∈ Si.

We say that unknown xi influences RHS set Sj (or that Sj is influenced by

xi), if and only if there exists a non-zero element in the i-th row of Mj . In sparse

MRHS systems, each unknown influences only a limited number of RHSs, and

vice-versa. E.g., if the density of the MRHS system is d = 0, and each Mi has

dimension n × l, each RHS set is influenced by (exactly) l unknowns, and each

unknown influences l RHS sets on average. With density d, each RHS set is

influenced by l+ d/n unknowns on average, and each variable influences l+ d/m

RHS sets on average.

To simplify discussion, we say that RHS (set) Si is satisfied (for some x),

if ui ∈ Si, and we call RHS (set) Si unsatisfied, if ui ̸∈ Si. We define function

UNSAT(x,M) to represent the number of unsatisfied RHS sets in the MRHS

systemM for vector x, i.e.

UNSAT(x,M) = {i; x ·Mi ̸∈ Si}.

Note that if x is a solution of the MRHS systemM, UNSAT(x,M) = 0. We in-

vestigate a generic class of algorithms that start from some random x and try to

change its individual bits one by one in such a way, that we minimize the value

of UNSAT function. We call them “bit-flipping” algorithms.

3. Modelling algebraic cryptanalysis with sparse MRHS systems

Our aim is to investigate a general behavior of the “bit-flipping” class of

algorithms for solving sparse MRHS equations. We do not use completely random

MRHS systems, but instead, we focus on a specific model related to algebraic

cryptanalysis.

Instead of focusing on some specific cipher, we use a generic AND-XOR

circuit (each gate has 2 inputs and one output), with some number of circuit

inputs and outputs. We suppose that the attacker is given the outputs of the

system and her task is to find the input of the system that produces such output.

In our model, the fixed inputs (and other potential constants in the circuit) are

treated as random constants ci.

On solving sparse MRHS equations with bit-flipping 687

We can solve the circuit problem by creating a corresponding MRHS sys-

tem in such a way, that any solution of the circuit problem can be computed in

polynomial time (with linear algebra) from a solution of the MRHS system.

The MRHS system is based on non-linear AND gates. Circuit inputs or their

linear combinations, as well as selected internal values (typically the outputs of

the AND gates) in the circuit, represent the unknown vector x of the MRHS

system.

A circuit with m AND gates leads to a MRHS system with m MRHS equa-

tions of type x · Mi + ci ∈ SAND, where SAND = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, 1)}. First two coordinates of vectors in SAND correspond to AND gate in-

puts, and the last one corresponds to an AND gate output. The inputs and out-

puts of AND gates are expressed as linear combinations of unknowns (columns of

Mi).

Let some column of Mi have w non-zero elements. Such a linear combination

can be realized by w − 1 XOR gates. Thus, a sparse MRHS system with density

d corresponds to a circuit with at most d XOR gates (note that the circuit can

be realized with fewer XOR gates due to possible gate reuse).

In our experiments, we create random sparse MRHS systems with MRHS

equations of the form x ·Mi + ci ∈ SAND. Each Mi has 3 columns. Firstly, we

ensure that each column of each Mi has one non-zero element (in random posi-

tions), and all 3 columns are linearly independent. Then, we randomly distribute

d ones into random positions within the whole joint matrix. Finally, we generate

random constants ci in such a way, that the MRHS system has a solution (this

is a typical use case for a bit-flipping algorithm application). Solution is ensured

by generating a random vector x and selecting ci’s from sets SAND +x ·Mi. Our

parameter choice is n = m also ensures that there is a single expected solution of

the system. Note that such systems are considered the hardest to solve.

4. Bit-flipping algorithm for solving (sparse) MRHS systems

Let s be a solution of a sparse MRHS system M over F2 with m MRHS

equations, n unknowns, and density d. Let x be a random vector from Fn
2 with

Hamming distance to s denoted by w = wH(x + s). We show that in (sparse)

MRHS system, value w is related to value u = UNSAT(x,M).

Equation x ·Mi+ci ∈ SAND is influenced (on average) by 3+d/m unknowns.

This equation is satisfied with probability 1, if each of the unknowns influencing

it are correct, i.e., each xj = sj . Otherwise, it is satisfied with probability 1/2

688 P. Zajac

(4 vectors in SAND out of 8 possible). Thus, each MRHS equation is satisfied

with probability

Pr(SAT) =
1

2
+

1

2
·
(
1− w

n

)3+ d
m

.

If w = 0, this probability is 1, and u = 0. If w increases, Pr(SAT) decreases, and

expected u = m · (1− Pr(SAT)) increases as well. The rate of growth of u as

function w is largest for w small, and is near to 0 for w nearing n. If

w

n
≥ 1−

(
2

3 + d
m

) 1

2+ d
m

,

the expected change of w by 1 increases u by less than 1 on average (as u′(w) ≤ 1).

On the other hand, if we have successfully located some “near solution” with

low enough w, we can quickly get a better approximation to the real solution

s by changing those bits that decrease the number of unsatisfied equations in the

MRHS system.

Algorithm 1 Generic MRHS bit-flipping

Require: MRHS system: x · (M1| · · ·Mm) + (c1| · · · |cm) ∈ S1 × · · · × Sm

Ensure: Solution x of the MRHS system, or ⊥
x←R Fn ▷ Initialize with random x.

while stopping condition not reached do

for all i ∈ {1, 2, . . . ,m} do
Compute ui = x ·Mi + ci
if ui ̸∈ Si then ▷ Unsatisfied RHS.

Send bit-flipping information to each xj influencing Mi.

end if

end for

if all MRHS equations were satisfied then

return x

else if restart condition reached then

x←R Fn

else

Select bit(s) of x to flip, based on bit-flipping information.

end if

end while

return ⊥ ▷ Solution not found.

On solving sparse MRHS equations with bit-flipping 689

This analysis leads us to a general idea of a bit-flipping algorithm presented as

Algorithm 1. We start from a random point x and compute values ui = x·Mi+ci.

If some ui ̸∈ Si, the i-th MRHS equation is unsatisfied. We should mark each

variable that can influence the value of such an unsatisfied equation as a potential

bit to flip (change value of the guessed variable). We evaluate information from

each MRHS equation and either find that the system is solved or decide to change

some specific bit or restart the process altogether with some other starting x.

We have instantiated this generic scheme with multiple concrete algorithms

based on different information propagated from unsatisfied MRHS equations and

bit flipping selection strategies. One of the most successful strategies was an al-

gorithm we called “Weighted flip”, presented as Algorithm 2.

Algorithm 2 Bit-flipping algorithm “Weighted Flip”

Require: MRHS system: x · (M1| · · ·Mm) + (c1| · · · |cm) ∈ S1 × · · · × Sm

Ensure: Solution x of the MRHS system, or ⊥
NumIterations← 0

x←R Fn ▷ Initialize with random x.

while NumIterations < MaxIterations do

NumIterations← NumIterations+ 1

Solved← True

for all j ∈ {1, 2, . . . , n} do
wj ← 0 ▷ Reset weights for flipping bits.

end for

for all i ∈ {1, 2, . . . ,m} do
Compute ui = x ·Mi + ci
if ui ̸∈ Si then ▷ Unsatisfied RHS.

Solved← False

for all j such that Mi,j = 1 and (x+ ej) ·Mi + ci ∈ Si do

wj ← wj + 1 ▷ Add weight to bits influencing given RHS.

end for

end if

end for

if Solved then return x ▷ Each RHS satisfied.

else

Choose j randomly with probability
wj∑n

i=1 wi
. ▷ Weighted selection.

xj ← xj + 1 ▷ Flip the selected bit.

end if

end while

return ⊥ ▷ No solution found within the given number of iterations.

690 P. Zajac

The ”Weighted flip” algorithm is based on a strategy of only flipping those

bits that can change the state of the MRHS equation from unsatisfied to satisfied.

This is expressed by condition (x+ej)·Mi+ci ∈ Si, but can be quickly computed

according to table 1.

ui xj1 xj2 xj3

001 0 0 1

011 1 0 1

101 0 1 1

110 1 1 1

Table 1. “Weighted flip” algorithm: Possible bits to flip based on the value of ui.

If only one equation is unsatisfied, each bit will accumulate

• either weight 0: changing its value will not correct the unsatisfied equation;

• or weight 1: changing its value will correct the unsatisfied equation.

We can change any of the bits with weight 1, and the equation will become

satisfied. However, this does not guarantee that we have obtained a solution. In

such a case, some other equation must become unsatisfied, and we repeat the

process with new weights based on the new unsatisfied equation.

If multiple equations are unsatisfied, some bits can get a higher weight than 1.

In this case, changing their value improves more than one MRHS equation. In the

“Weighted flip” algorithm, we randomly select any bit with non-zero weight. The

probability of a particular bit selection is proportional to the total accumulated

weight. Variables that can improve 2 MRHS equations are selected twice as likely

as those that can only improve 1 MRHS equation, and so on.

In the experimental section, we compare the “Weighted flip” selection with

two different strategies. The first one chooses only those bits that can improve

the maximum number of MRHS equations at once (“Flip maximum”). Firstly,

we find the maximum weight wm. Then we choose randomly from only those

variables that attain weight wm. Our experiments show that this strategy suffers

from the problem of cyclical wrong assignment: we flip the wrong variable back

and forth (or some subset of variables in a cycle), never reaching the solution of

the system. To mitigate the problem of the cycles, we have defined the strategy

“Flip maximum restarts”. In this strategy, we restart the algorithm if a cycle

of length two is detected: the only suggested candidate is the bit changed in the

previous iteration.

On solving sparse MRHS equations with bit-flipping 691

5. Hill climbing algorithm for solving (sparse) MRHS systems

The general bit-flipping algorithm (Algorithm 1) is based on propagating

information from unsatisfied MRHS equations to individual variables influencing

those MRHS equations. As it is formulated, it does not take into account the

possible negative influence bit flipping might have on satisfied MRHS equations.

We can take a different approach: Investigate the influence of each bit flip

on the whole system, and change bits accordingly. Each candidate for solution

x can be changed in n positions to value x + ei (successor of x). We want to

select a sequence of bit flips, that will minimize the number of unsatisfied MRHS

equations. If we reach some vector s for which UNSAT (s,M) = 0, we have

solved the system. We are working with a case of optimization algorithm, that

tries to find the minimum of the function UNSAT (x,M) over the space Fn
2 .

Algorithm 3 Hill climbing algorithm for MRHS problem

Require: MRHS systemM: x · (M1| · · ·Mm) + (c1| · · · |cm) ∈ S1 × · · · × Sm

Ensure: Solution x of the MRHS system, or ⊥
x←R Fn ▷ Initialize with random x.

NumIterations← 0

while NumIterations < MaxIterations do

Compute c0 ← Unsat(x,M)

if c0 = 0 then

return x ▷ Every MRHS satisfied.

end if

▷ Try to minimize number of unsatisfied MRHS equations.

for all i ∈ {1, 2, . . . , n} do
Compute ci ← Unsat(x+ ei,M)

end for

Choose j such that cj ≤ ci for each i ∈ {1, 2, . . . , n}
if cj ≥ c0 then

x←R Fn ▷ No improvement possible, restart.

else

xj ← xj + 1 ▷ Flip bit.

end if

NumIterations← NumIterations+ 1

end while

return ⊥ ▷ No solution found within the given number of iterations.

692 P. Zajac

One of the simplest solutions is to use the greedy approach: Select (one of)

the successor which minimizes the value of UNSAT, restart with random x if we

are stuck in local minimum (no successor provides a lower value of UNSAT). This

is an instance of the Hill climbing heuristic and is summarized as Algorithm 3.

Note that the Hill climbing (HC) algorithm is in principle similar to the “Flip

maximum” (FM) algorithm with these main differences:

• HC takes into account also information from satisfied MRHS equations, as it

computes the expected value of UNSAT function after each possible bit flip;

• HC does not get stuck in a cycle of bit-flips because if no improvement is

possible, we restart the algorithm;

• HC requires n-times more MRHS evaluations per each bit flip. FM (and

other instances of generic bit-flipping) evaluate MRHS equation only in one

point x, whereas HC requires to evaluate also each x+ ei.

We compare the Hill climbing algorithm with selected single-evaluation bit

flipping algorithms in the experimental section.

Note that there are multiple different heuristic algorithms successfully used

in cryptanalysis [3], [4]. A more advanced algorithm can improve the success

chance based on the number of bit-flips even further but might increase the cost

of every individual bit-flip assessment. On the other hand, our experiments show

that faster bit-flip assessment might be preferable, and a simple bit-flipping-based

attack can find a solution faster (in real-time) than with a more complex method.

6. Experimental results

Our exploration of the bit flipping algorithms focuses on a simple model of

sparse MRHS equations related to algebraic cryptanalysis summarized in Section

3. In the experiments, we generate 100 random sparse MRHS systems according

to our model and execute 100 randomized instances of the evaluated algorithm on

each system. We measure how many bit flips were required to solve the system

(bounded at 1000 bit-flips, after this value, we stopped the algorithm). Each

experiment provided us with 10000 results, which we used to plot the success

rate of the algorithm per number of bit flips for a given configuration. In the

case of the Hill climbing algorithm, we also use a re-scaling to the number of

MRHS evaluations, with the number of MRHS evaluations computed as n-times

the number of the bit flips (technically, in our algorithm it is (n + 1)-times, but

it is possible to reuse one of the values for the next iteration).

On solving sparse MRHS equations with bit-flipping 693

For a fair comparison, we also include the results from a “Random” algo-

rithm: It tries to find a solution by random guesses (try random x, stop if it is

a solution). “Random” algorithm provides a better reference for experimental

results (instead of a simple theoretical estimate), as it takes into account specifics

of the randomly generated systems we tried to solve (e.g., the fact that some of

them have multiple solutions).

Results of the “Weighted flip” (WF) algorithm are plotted in Figure 1. It has

a relatively low success rate for the small number of iterations but can solve almost

all sparse equations with a large enough number of iterations. It is suitable for

systems with low density (for dense systems, see WF-10-120, it is worse than

random search). It also scales well with the system size. Sparse (d = 0) MRHS

system with n = 30 variables could be on average solved with a comparable effort

to a random search of system with only 10 variables.

Figure 1. “Weighted Flip” algorithm, success rate per number of bitflips. System

size for WF-X-Y was m = n = X, with density Y .

694 P. Zajac

The “Flip maximum” (FM) algorithm performance is depicted in Figure 2.

While it has a better success rate for very sparse systems (d = 0) and a low

number of iterations, it quickly reaches its peak success rate. After this, the

algorithm typically gets stuck in a loop of bit-flips.

Figure 2. “Flip Maximum” algorithm, success rate per number of bitflips. System

size for FM-X-Y was m = n = X, with density Y .

FM algorithm can be significantly improved with restart strategy, see the re-

sults of the “Flip maximum restarts” (FMR) algorithm plotted in Figure 3. It has

the best success probability for a low number of iterations (among the explored

bit-flipping algorithms). However, its overall success rate for a large number of

iterations is lower than WF, and it scales worse with increasing system size and

density. We suspect the FMR algorithm could be improved by more advanced

cycle finding algorithms (for the restart condition) but at a higher computational

cost.

On solving sparse MRHS equations with bit-flipping 695

Figure 3. “Flip Maximum Restarts” algorithm, success rate per number of bitflips.

System size for FMR-X-Y was m = n = X, with density Y .

The Hill climbing (HC) algorithm (see Figure 4) has a significantly higher

success rate for both low and high iteration numbers. It is also less affected with

increased system size and density. On the other hand, Figure 4 does only take

into account the number of bit flips and not the complexity of the algorithm.

Figure 5 scales the results of the HC algorithm to account for factor n in

the complexity of evaluating individual bitflips. However, the comparison with

the “Random” algorithm here is misleading, as the true “Random” algorithm

needs to realize whole vector-matrix multiplication in each iteration, which is

comparable to n evaluations required in the HC algorithm. On the other hand,

we can replace the “Random” algorithm with the “Random bit-flip” algorithm,

where a single bit changes randomly in each iteration. Alternatively, we can

find solutions more efficiently by exhaustive search using Grey codes, which also

requires only a single vector addition and MRHS evaluation in each step. Thus, we

can see that the HC algorithm is still an effective improvement over the exhaustive

search, but only for sparse MRHS systems (with low density).

696 P. Zajac

Figure 4. “Hill Climbing” algorithm, success rate per number of bitflips. System

size for WF-X-Y was m = n = X, with density Y .

Figure 5. “Hill Climbing” algorithm, success rate per number of MRHS evaluations.

System size for WF-X-Y was m = n = X, with density Y .

On solving sparse MRHS equations with bit-flipping 697

The final Figures 6 and 7 provides a comparison of the three most success-

ful algorithms: “Weighted flip” (WF), “Flip maximum with restarts” (FMR) and

“Hill climbing” (HC). On Figure 6, we also add “Flip maximum” (FM) and “Ran-

dom” algorithms for a full comparison. Figure 7 shows a comparison of success

rates based on the number of MRHS evaluations. We can see that bit-flipping

algorithms outperform the hill-climbing algorithm due to a very efficient evalua-

tion of the bit-flipping decision. We suppose that the most successful algorithm

would be a combination of FMR and WF: start with FMR, and when the number

of iterations reaches a certain threshold without finding a solution (or maximum

weight is below some predetermined limit), switch to the WF algorithm.

Figure 6. Comparison of different bit-flipping strategies, and hill climbing algo-

rithm. Success rate per number of bitflips. System size m = n = 10, density 0.

698 P. Zajac

Figure 7. Comparison of different bit-flipping strategies, and hill climbing algo-

rithm. Success rate per number of MRHS evaluations. System size m = n = 10,

density 0.

7. Conclusions

In this article, we have presented a new generic algorithm (Algorithm 1) to

solve (sparse) MRHS equations. We have experimentally explored the perfor-

mance of some of its instantiations (WF, FM, FMR) against random search and

a more advanced hill-climbing algorithm. The experimental results indicate that

for sparse enough systems bit-flipping algorithms can significantly outperform

random search. E.g., the success rate of the WF algorithm applied to a system

with 30 variables is comparable to a random search for a solution in a system with

only 10 variables.

On the other hand, our model is based on an artificial random AND-XOR

circuit with a low number of both AND and XOR gates. It is not clear how

the results would change if we apply the algorithms to structured cipher designs,

such as iterated block ciphers with high diffusion. However, unlike other heuristic

methods, the bit-flipping approach is based on a local inconsistency (based on

On solving sparse MRHS equations with bit-flipping 699

internal bits), instead of trying to assess specific key bits, which influence a large

part of the encryption algorithm. As such, the performance of our algorithms can

be improved by hints provided by side-channel analysis but does not scale well if

the number of internal variables grows quickly with the number of rounds.

The presented general algorithmic scheme can be instantiated by multiple bit-

flipping and restart strategies. Our article was focused on formulating the general

idea and experimental evaluation of different bit flipping strategies. Finding the

optimal strategy for a specific class of MRHS systems and computing the exact

complexity of such an algorithm is left as an open problem.

References

[1] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, MiMC: Efficient

encryption and cryptographic hashing with minimal multiplicative complexity, In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,

2016, 191–219.

[2] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen and M. Zohner, Ciphers

for MPC and FHE, In: Advances in Cryptology–EUROCRYPT, 2015, 430–454.

[3] E. Antal, Nature-inspired heuristic methods in classical cipher cryptanalysis, In: Norwe-

gian–Slovakian Workshop in Crypto, 2016, 21.

[4] E. Antal, P. Javorka and Hliboký, Cryptanalysis of the columnar transposition using

meta-heuristics, Tatra Mountains Mathematical Publications 73 (2019), 39–60.

[5] M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C.
Orlandi, S. Ramacher, C. Rechberger, D. Slamanig, X. Wang

and G. Zaverucha, The Picnic signature algorithm, Microsoft (2020),

https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf.

[6] N. Courtois, D. Hulme, and T. Mourouzis, Solving Circuit Optimisation Prob-
lems in Cryptography and Cryptanalysis, IACR Cryptol. ePrint Arch. (2011),

https://eprint.iacr.org/2011/475.pdf.

[7] D. Goudarzi, and M. Rivain, On the multiplicative complexity of boolean functions and

bitsliced higher-order masking, In: International Conference on Cryptographic Hardware

and Embedded Systems, 2016, 457–478.

[8] P. Méaux, C. Carlet, A. Journault and F. Standaert, Improved filter permutators:
Combining symmetric encryption design, boolean functions, low complexity cryptography,

and homomorphic encryption, for private delegation of computations, In: Proceedings of

INDOCRYPT, 2019.

[9] H. Raddum and I. Semaev, Solving Multiple Right Hand Sides linear equations, Design,

Codes and Cryptography 49 (2008), 147–160.

[10] H. Raddum and P. Zajac, MRHS solver based on linear algebra and exhaustive search,
Journal of Mathematical Cryptology 12 (2018), 143–157.

[11] P. Zajac, A new method to solve MRHS equation systems and its connection to group
factorization, Journal of Mathematical Cryptology 7 (2013), 367–381.

700 P. Zajac

[12] P. Zajac, MRHS equation systems that can be solved in polynomial time, Tatra Mountains
Mathematical Publications 67 (2016), 205–219.

[13] P. Zajac, Connecting the complexity of MQ-and code-based cryptosystems, Tatra Moun-
tains Mathematical Publications 70 (2017), 163–177.

PAVOL ZAJAC

DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

ILKOVIČOVA 3, 81219 BRATISLAVA

SLOVAKIA

E-mail: pavol.zajac@stuba.sk

