Publ. Math. Debrecen
Supplementum 100 (2022), 655-682

DOI: 10.5486/PMD.2022.Suppl. 7

Arithmetic on generalized Hessian curves using compression function and its applications to the isogeny-based cryptography

By Michał Wroński and Tomasz Kijko

Abstract

In this paper, we present formulas for differential addition and doubling using the compression function $f_{G H, 2}(P)=x_{P}+y_{P}$ of degree 2 on a generalized Hessian curve $E_{G H}: x^{3}+y^{3}+a=d x y$, where $P=\left(x_{P}, y_{P}\right)$. We use in this context elementary algebra methods. Moreover, we also present formulas for 2, 3 -isogeny, and general ℓ-isogeny evaluation, using this function. It is worth noting that for the compression function $f_{G H, 2}$, such formulas have not been presented before. On the other hand, we also use elementary algebra methods for obtaining differential addition and doubling formulas using the compression function $f_{G H, 6}(P)=x_{P} y_{P}$ of degree 6 , and we present formulas for 2 and general ℓ-isogeny evaluation using this function.

1. Introduction

Isogeny-based cryptography is one of the most promising fields in postquantum cryptography. In the SIKE algorithm (Supersingular Isogeny Diffie-Hellman) specification, x-line arithmetic on the Montgomery curve is used. It is worth noting that it is also possible to use other alternative models of elliptic curves in this context, such as Edwards, twisted Edwards curves, Huff's curves, Hessian curves, generalized Hessian curves, and twisted Hessian curves. This paper mainly focuses on applying x-line arithmetic to the Hessian curves family. We consider the compression function on generalized Hessian curves, given by $f_{G H, 2}(P)=x_{P}+y_{P}$, where $P=\left(x_{P}, y_{P}\right)$. This compression function may be easily obtained from the compression function $f_{T H, 2}(P)=\frac{y_{P}+1}{x_{P}}$ on the twisted

[^0]Hessian curve $E_{T H}$ and isomorphism between $E_{G H}$ and $E_{T H}$, which is simple coordinates swapping. It is worth noting that formulas for differential addition on a twisted Hessian curve using the compression function $f_{T H, 2}$ have been obtained in [5] using Gröbner basis mechanism. This paper presents algebraic methods for obtaining differential addition and doubling formulas on the curve $E_{G H}$ using the compression function $f_{G H, 2}$. The application of function $f_{G H, 2}$ into the isogenybased cryptography has not been presented before. This paper will show how to compute 2 -isogeny and 3 -isogeny, using formulas from [4]. Moreover, for the computation of isogeny of degree $\ell \geq 4$, we use the Vélu formula using isomorphic elliptic curves in the short Weierstrass form.

Even though the application of Velu formula for the computation of 2-isogeny on Hessian curves using point representation in full projective coordinates was presented in [11], we apply Vélu formulas to obtain compression of isogeny evaluation formula for a point P given only by its compression $f_{G H, 2}(P)$. Moreover, we use Vélu formulas only when $\ell \neq 3$.

Unfortunately, it seems that using the compression function $f_{G H, 2}$ in isogenybased cryptography is reasonable only in the context of SIDH and SIKE protocols, where consecutive computations of 2 and 3 -isogenies are required. In the case, when it is necessary to compute isogenies of larger degree, like, e.g., in CRS [10] and CSIDH [3], application of the compression function $f_{G H, 2}$ is challenging and inefficient because the isogeny evaluation formula for twisted Hessian curves given in [4] (and thus for generalized Hessian curves) has a multiplicative character. However, the compression function $f_{G H, 2}$ has additive character.

Then next considered compression function on generalized Hessian curves presented in this paper is degree 6 function $f_{G H, 6}(P)=x_{P} y_{P}$. This compression function has been considered in [7], where presented formulas for differential addition and doubling have been obtained using computational methods and Gröbner basis mechanism. In this paper, for the compression function $f_{G H, 6}$, formulas for a differential addition and doubling have been derived algebraically. Moreover, we found the formulas for isogeny computations and point evaluations in the case of 2 and general ℓ-isogeny. In the paper [7] such formulas for isogenies computation have not been considered. Because of computation of such isogenies has multiplicative character, the function $f_{G H, 6}$ could be used in practice in the case of ℓ-isogeny computations, for $\ell \geq 5$. In the case of $\ell=3$ our approach of using the compression function $f_{G H, 6}$ fails, because for different 3 -torsion points P function $f_{G H, 6}(P)$ may give the same results, which is inconvenient in our applications.

Some presented formulas in this paper are not valid if the characteristic of the field is two and/or three. For simplicity we assume in the whole paper, that the characteristic of the underlying field is larger than three.

2. Compression functions on elliptic curves

On elliptic curve E over a field \mathbb{K} we call a compression function any rational function $f: E(\mathbb{K}) \rightarrow \mathbb{K}$ such that for a point $P \in E(\mathbb{K})$ holds $f(P)=f(-P)$. The degree of a compression function is the number of elements of the kernel of the map $f(P)-f(Q)$, where $P, Q \in E(\mathbb{K})$. If the function f is of degree 2 , then $f(P)=f(Q)$ iff $Q=-P$. For any compression function f there is induced point multiplication of values $f(P)$ given by $[n] f(P)=f([n] P)$ for $n \in \mathbb{Z}$.

There exist rational functions for differential additions $A_{1}(x, y), A_{2}(x, y) \in$ $K(x, y)$ such that

$$
\begin{aligned}
f(P+Q)+f(P-Q) & =A_{1}(f(P), f(Q)), \\
f(P+Q) f(P-Q) & =A_{2}(f(P), f(Q)) .
\end{aligned}
$$

Moreover, there also exists rational function for doubling $D(x) \in \mathbb{K}(x)$, such that

$$
f([2] P)=D(f(P))
$$

The properties above allow to compute $[n] f(P)$ using the Montgomery ladder algorithm. We may adopt $\left.A(x, y, z)=A_{1}(x, y)\right)-z$ or $A(x, y, z)=A_{2}(x, y) / z$ in this algorithm.

```
Algorithm 1: The Montgomery ladder
    Input: \(f(P)\) and the binary expansion of \(n=\left(n_{k}, \ldots, n_{0}\right)_{2}\)
    Output: \([n] f(P)\)
    \(x_{P}:=f(P) ; x_{Q}:=D\left(x_{P}\right)\);
    for \(i=k-1, \ldots, 0\) do
        if \(n_{i}=1\) then
            \(x_{P}:=A\left(x_{P}, x_{Q}, f(P)\right) ;\)
            \(x_{Q}:=D\left(x_{Q}\right) ;\)
        else
            \(x_{Q}:=A\left(x_{P}, x_{Q}, f(P)\right) ;\)
            \(x_{P}:=D\left(x_{P}\right) ;\)
        end
    end
    return \(x_{P}\);
```

It is worth noting that it is also possible to obtain a compression function of a degree greater than 2 . It is possible if one considers translation $\tau_{T}: E \rightarrow$ $E, \tau_{T}(P)=P+T$ for a particular chosen point $T \in E(\mathbb{K})$ of order n. Now one can search for the compression function $f_{2 n}$ of degree $2 n$ which is invariant under involution and translation by T. It means that $f_{2 n}(P)=f_{2 n}(Q)$ if and only if $Q= \pm P+[k] T$, for $k=\overline{0, n-1}$. More details may be found in [7].

3. Generalized and twisted Hessian curves

Definition 1. [8] A generalized Hessian curve $E_{G H}$ over a field \mathbb{K} is given by the equation

$$
E_{G H} / \mathbb{K}: x^{3}+y^{3}+a=d x y,
$$

for $a, d \in \mathbb{K}$ where $a \neq 0$ and $d^{3} \neq 27 a$.
The sum of points $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ on $E_{G H}$ is given by formulas:
(1) if $P \neq \pm Q$ (point addition)

$$
P+Q=\left(\frac{y_{P}^{2} x_{Q}-y_{Q}^{2} x_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}, \frac{x_{P}^{2} y_{Q}-x_{Q}^{2} y_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}\right) ;
$$

(2) if $P=Q$ (point doubling)

$$
[2] P=\left(\frac{y_{P}\left(a-x_{P}^{3}\right)}{x_{P}^{3}-y_{P}^{3}}, \frac{x_{P}\left(y_{P}^{3}-a\right)}{x_{P}^{3}-y_{P}^{3}}\right) .
$$

The negation of the point $P=\left(x_{P}, y_{P}\right)$ is $-P=\left(y_{P}, x_{P}\right)$.
In projective coordinates, a generalized Hessian curve is given by the equation

$$
E_{G H} / \mathbb{K}: X^{3}+Y^{3}+a Z^{3}=d X Y Z .
$$

The neutral element of the addition law is the point at infinity $(1:-1: 0)$. By swapping X with Z we obtain the equation of twisted Hessian curve in projective coordinates

$$
E_{T H} / \mathbb{K}: a X^{3}+Y^{3}+Z^{3}=d X Y Z,
$$

and affine coordinates

$$
E_{T H} / \mathbb{K}: a x^{3}+y^{3}+1^{3}=d x y .
$$

The addition law's neutral element for twisted Hessian curves is the point $(0,-1)$. The negation of the point $P=\left(x_{P}, y_{P}\right)$ is $-P=\left(\frac{x_{P}}{y_{P}}, \frac{1}{y_{P}}\right)$.

The sum of points $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ on $E_{T H}$ is given by formulas: a) if $P \neq \pm Q$ (point addition)

$$
P+Q=\left(\frac{x_{P}-y_{P}^{2} x_{Q} y_{Q}}{a x_{P} y_{P} x_{Q}^{2}-y_{Q}}, \frac{y_{P} y_{Q}^{2}-a x_{P}^{2} x_{Q}}{a x_{P} y_{P} x_{Q}^{2}-y_{Q}}\right)
$$

b) if $P=Q$ (point doubling)

$$
[2] P=\left(\frac{x_{P}-y_{P}^{3} x_{P}}{a y_{P} x_{P}^{3}-y_{P}}, \frac{y_{P}^{3}-a x_{P}^{3}}{a y_{P} x_{P}^{3}-y_{P}}\right)
$$

Theorem 1. Generalized Hessian curve $E_{G H} / \mathbb{K}$ is birationally equivalent to a twisted Hessian curve $E_{T H} / \mathbb{K}$. The isomorphism $\psi: E_{T H} \rightarrow E_{G H}$ for $P=(X: Y: Z) \in E_{T H}$ is given by the equation:

$$
\psi(P)=\psi(X: Y: Z)=(Z: Y: X)
$$

The inverse isomorphism $\psi^{\prime}: E_{G H} \rightarrow E_{T H}$ for $P^{\prime}=\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right) \in E_{G H}$ is given by the equation:

$$
\psi^{\prime}\left(P^{\prime}\right)=\psi^{\prime}\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right)=\left(Z^{\prime}: Y^{\prime}: X^{\prime}\right)
$$

In the next two theorems, we denote by ω the primitive cube root of unity in the field \mathbb{K}.

Theorem 2. There is given an elliptic curve $E_{S W}$ in short Weierstrass form $E_{S W} / \mathbb{K}: y^{2}=x^{3}+A x+B$ and there is point $T \in E_{S W}(\mathbb{K})$ of order 3. Then one can find isomorphic $E_{S W} / \mathbb{K}$ to the elliptic curve in triangular form $E_{T R} / \mathbb{K}$: $\bar{y}^{2}+d \overline{x y}+a \bar{y}=\bar{x}^{3}$, where
(1) d is any root of polynomial $W(s)=\frac{-1}{6912} s^{8}-\frac{1}{24} A s^{4}-B s^{2}+A^{2}$;
(2) $a=\left(A+\frac{d^{4}}{48}\right) \frac{2}{d}$;
(3) $\bar{x}=x-\frac{d^{2}}{12}$;
(4) $\bar{y}=y-\frac{d \bar{x}+a}{2}$.

Proof. The theorem is the result of allowed coordinates change for elliptic curves.

Corollary 1. There exists an isomorphism $\psi_{1}: E_{S W} \rightarrow E_{T R}$, which transforms the point $P_{S W} \in E_{S W}(\mathbb{K})$ into the point $P_{T R} \in E_{T R}(\mathbb{K})$, where $P_{T R}=\psi_{1}\left(P_{S W}\right)=(\bar{x}, \bar{y})=\left(x-\frac{d^{2}}{12}, y-\frac{d \bar{x}+a}{2}\right)$.

Theorem 3 (This is Theorem 5.3 in [1]). There is given an elliptic curve in triangular form $E_{T R} / \mathbb{F}_{q}: V W(V+d U+a W)=U^{3}$. There exists a twisted Hessian curve $E_{T H} / \mathbb{F}_{q}:\left(d^{3}-27 a\right) X^{3}+Y^{3}+Z^{3}=3 d X Y Z$, which is isomorphic to the curve $E_{T R}$ by isomorphism $\psi_{2}: E_{T R} \rightarrow E_{T H}$, where $\psi_{2}(U, V, W)=$ $\left(U, \omega(V+d U+a W)-\omega^{2} V-a W, \omega^{2}(V+d U+a W)-\omega V-a W\right)=(X, Y, Z)$. The inversion of ψ_{2} is the isomorphism $\psi_{2}^{-1}: E_{T H} \rightarrow E_{\Delta}$, where $\psi_{2}^{-1}(X, Y, Z)=$ $\left(X,-\frac{d X+\omega Y+\omega^{2} Z}{3},-\frac{d X+Y+Z}{3 a}\right)$.

Proof. The proof may be found in [1], Theorem 5.3.
Theorem 4. There is given an elliptic curve in triangular form $E_{T R, a, d} / \mathbb{F}_{q}: V W(V+d U+a W)=U^{3}$. There exists a generalized Hessian curve $E_{G H} / \mathbb{F}_{q}: X^{3}+Y^{3}+\left(d^{3}-27 a\right) Z^{3}=3 d X Y Z$, which is isomorphic to the curve $E_{T R}$ by isomorphism $\psi_{2}: E_{T R} \rightarrow E_{G H}$, where $\psi_{2}(U: V: W)=$ $\left(\omega^{2}(V+d U+a W)-\omega V-a W: \omega(V+d U+a W)-\omega^{2} V-a W: U\right)=(X:$ $Y: Z)$. The inversion of ψ_{2} is the isomorphism $\psi_{2}^{-1}: E_{T H} \rightarrow E_{T R}$, where $\psi_{2}^{-1}(X: Y: Z)=\left(Z:-\frac{d Z+\omega Y+\omega^{2} X}{3}:-\frac{d Z+Y+X}{3 a}\right)$.

Proof. The same as for Theorem 3 with replacing variables X and Z.
The following remark is the consequence of Theorems 2 and 3.
Remark 1. For elliptic curves in short Weierstrass form $E_{S W}$ where $3 \mid \# E_{S W}\left(\mathbb{F}_{q}\right)$ and the point $P_{S W} \in E_{S W}$ given in $X Z$ coordinates $P_{S W}=(X: Z)$, it is possible to find the point $P_{T H}=\psi_{2}\left(\psi_{1}\left(P_{S W}\right)\right)$ (given in $X R$ coordinates $(X$: $R)$, where $R=Y+Z)$, where $P_{T H}=\left(12 X-Z d^{2}:-d\left(X-\frac{d^{2}}{12}\right)-3 a Z\right)=(X: R)$. Inverse transformation from $P_{T H}$ (given by $X R$ coordinates) to $P_{S W}$ in $X Z$ coordinates is given by $P_{S W}=\psi_{1}^{-1}\left(\psi_{2}^{-1}\left(P_{T H}\right)=\psi_{2}^{-1}\left(a X_{T H}:-\left(d X_{T H}+R_{T H}\right)\right)=\right.$ $\left(12 a X_{T H}-d^{2}\left(d X_{T H}+R_{T H}\right): 12\left(d X_{T H}+R_{T H}\right)\right)$.

Similarly, the remart below, is the consequence of Theorems 2 and 4.
Remark 2. For elliptic curves in short Weierstrass form $E_{S W}$ where $3 \mid \# E_{S W}\left(\mathbb{F}_{q}\right)$ and the point $P_{S W} \in E_{S W}$ given in $X Z$ coordinates $P_{S W}=(X: Z)$, it is possible to find the point $P_{G H}=\psi_{2}\left(\psi_{1}\left(P_{S W}\right)\right)$ given in $R Z$ coordinates $(R=X+Y)$, where $P_{G H}=\left(-d\left(Z-\frac{d^{2}}{12}\right)-3 a X: 12 Z-X d^{2}\right)=(R: Z)$. Inverse transformation from $P_{G H}$ (given by $R Z$ coordinates) to $P_{S W}$ (given by $X Z$ coordinates) is given by $P_{S W}=\psi_{1}^{-1}\left(\psi_{2}^{-1}\left(P_{G H}\right)=\psi_{2}^{-1}\left(a Z_{G H}:-\left(d Z_{G H}+R_{G H}\right)\right)=\right.$ $\left(12 a Z_{G H}-d^{2}\left(d Z_{G H}+R_{G H}\right): 12\left(d Z_{G H}+R_{G H}\right)\right)$.

The application of compression functions in isogeny-based cryptography is presented in [9], in the context of compression functions of degree 8 on Edwards
curves. Similarly, the application of compression functions of degree 2 on Huff's curves in the isogeny-based cryptography is presented in [6]. We will focus on applying the compression function $f_{G H, 6}(x, y)=x y$ on the generalized Hessian curve. The multiplicative character of formula (3) favors the compression function $f_{G H, 6}$ for applications in isogeny-based cryptography. Let us note that $f_{G H, 2}(x, y)=x+y$ is strictly additive and, therefore, applying this compression function to formula (3) seems to be much more challenging and inefficient.

We transformed the formulas for general ℓ-isogeny on a twisted Hessian curve from [4] into their equivalent formulas on generalized Hessian curves.

Let $E_{T H}: a x^{3}+y^{3}+1=d x y$ and $E_{T H}^{\prime}: a^{\prime} x^{3}+y^{3}+1=d^{\prime} x y$, and let ℓ be the degree of the isogeny $\phi: E_{T H} \rightarrow E_{T H}^{\prime}, n=\ell-1$, and let $\bar{F}=\{(0,-1)\} \cup \sum_{i=1}^{n}\left\{\left(\overline{u_{i}}, \overline{v_{i}}\right)\right\}$ be the kernel of the isogeny ϕ. Then, using the general formula for coefficients of an ℓ-isogenous twisted Hessian curve $E_{T H}$, the coefficients of the isogenous generalized Hessian curve $E_{T H}^{\prime}$ are equal to $a^{\prime}=a^{\ell}, d^{\prime}=\frac{(1-2 n) d+6 \sum_{i=1}^{n} \frac{1}{\overline{u_{i} v_{i}}}}{\prod_{i=1}^{n} \overline{u_{i}}}$.

Using birationally equivalence between generalized Hessian and twisted Hessian curve, coefficients of an ℓ-isogenous generalized Hessian curve may be computed as $a^{\prime}=a^{\ell}, d^{\prime}=\left((1-2 n) d+6 \sum_{i=1}^{n} \frac{u_{i}^{2}}{v_{i}}\right) \prod_{i=1}^{n} u_{i}$, where the kernel of the isogeny is equal to $F=\{(1:-1: 0)\} \cup \sum_{i=1}^{n}\left\{\left(u_{i}, v_{i}\right)\right\}$.

Using the fact, that if point $Q=\left(u_{i}, v_{i}\right)$ belongs to the kernel F, then $-Q=\left(v_{i}, u_{i}\right)$ also belongs to this kernel, and for odd $\ell=2 s+1$ it may be written that

$$
\begin{align*}
d^{\prime} & =\left((1-2 n) d+6 \sum_{i=1}^{s}\left(\frac{u_{i}^{2}}{v_{i}}+\frac{v_{i}^{2}}{u_{i}}\right)\right) \prod_{i=1}^{s} u_{i} v_{i} \\
& =\left((1-2 n) d+6 \sum_{i=1}^{s}\left(\frac{u_{i}^{3}+v_{i}^{3}}{u_{i} v_{i}}\right)\right) \prod_{i=1}^{s} u_{i} v_{i} \tag{1}
\end{align*}
$$

Similarly, the equation for evaluation of degree ℓ isogeny, for $\ell \neq 3$, [4, Theorem 5] on a twisted Hessian curve may be easily transformed into the same form on a generalized Hessian curve:

$$
\phi(P)=\left(\prod_{Q \neq(1:-1: 0) \in F} x_{P+Q}, \prod_{Q \neq(1:-1: 0) \in F} y_{P+Q}\right)
$$

where $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$.

4. Compression function of degree 2 on generalized Hessian curves

Let us define the compression function on a generalized Hessian curve of degree 2 given by $f_{G H, 2}(P)=f_{G H, 2}\left(x_{P}, y_{P}\right)=x_{P}+y_{P}$. At first, it will be proved that $f_{G H, 2}(P)$ has indeed degree 2 .

Proof. For $P=\left(x_{P}, y_{P}\right) \in E_{G H}(\mathbb{K})$ set $r_{P}=f_{G H, 2}(P)=x_{P}+y_{P}$. Then $y_{P}=r_{P}-x_{P}$ and then $E_{G H}$ equation

$$
x_{P}^{3}+y_{P}^{3}+a=d x_{P} y_{P}
$$

can be transformed into:

$$
x_{P}^{3}+\left(r_{P}-x_{P}\right)^{3}+a=d x_{P}\left(r_{P}-x_{P}\right),
$$

which may be simplified to the form

$$
3 r_{P} x_{P}^{2}+d x_{P}^{2}-3 r_{P}^{2} x_{P}-d r_{P} x_{P}+r_{P}^{3}+a=0
$$

If this equation is satisfied by x_{P}, then, because the degree of the equation is equal to 2 , the second root is $r_{P}-x_{P}$, which means that the only points, for which holds $r_{P}=x_{P}+y_{P}$ and $3 r_{P} x_{P}^{2}+d x_{P}^{2}-3 r_{P}^{2} x_{P}-d r_{P} x_{P}+r_{P}^{3}+a=0$ are points $P=\left(x_{P}, y_{P}\right)$ and $-P=\left(y_{P}, x_{P}\right)$.
4.1. Obtaining formulas for point doubling and points addition on generalized Hessian curves using the compression function $f_{G H, 2}(x, y)$ of degree $d=2$. Let $r=f_{G H, 2}(x, y)=x+y$ be the compression function on a generalized Hessian curve. Using Sylvester formulas for points addition on a generalized Hessian curve

$$
x_{P+Q}=\frac{y_{P}^{2} x_{Q}-y_{Q}^{2} x_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}, \quad y_{P+Q}=\frac{x_{P}^{2} y_{Q}-x_{Q}^{2} y_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}
$$

it is possible to write the sum of $f_{G H, 2}(P+Q)+f_{G H, 2}(P-Q)$, where $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ in the following form:

$$
\begin{aligned}
& f_{G H, 2}(P+Q)+f_{G H, 2}(P-Q)=\frac{L}{M} \\
& \quad=\frac{-y_{P} y_{Q}{ }^{2}-x_{P} y_{Q}^{2}+y_{P}^{2} y_{Q}+x_{P}^{2} y_{Q}+x_{Q} y_{P}^{2}-x_{Q}{ }^{2} y_{P}-x_{P} x_{Q}{ }^{2}+x_{P}^{2} x_{Q}}{x_{Q} y_{Q}-x_{P} y_{P}} .
\end{aligned}
$$

Using that $r_{P}=x_{P}+y_{P}$ and $r_{Q}=x_{Q}+y_{Q}$, the nominator may be easily transformed into the form:

$$
-r_{P}\left(y_{Q}^{2}+x_{Q}^{2}\right)+r_{Q}\left(y_{P}^{2}+x_{P}^{2}\right)
$$

Using a generalized Hessian curve equation and putting $r=x+y$ and $t=x y$, one can obtain that if

$$
x^{3}+y^{3}+a=d x y
$$

then

$$
\begin{equation*}
(x+y)\left((x+y)^{2}-3 x y\right)+a=d x y \tag{2}
\end{equation*}
$$

Putting $t=x y$ the Equation (2) is equivalent to

$$
r^{3}-3 r t+a=d t
$$

and finally:

$$
\begin{equation*}
t=\frac{r^{3}+a}{d+3 r} \tag{3}
\end{equation*}
$$

Putting $t_{P}=x_{P} y_{P}$ and $t_{Q}=x_{Q} y_{Q}$, one can write

$$
\begin{equation*}
y_{P}^{2}+x_{P}^{2}=\left(x_{P}+y_{P}\right)^{2}-2 x_{P} y_{P}=r_{P}^{2}-\frac{2\left(r_{P}^{3}+a\right)}{d+3 r_{P}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{Q}^{2}+x_{Q}^{2}=\left(x_{Q}+y_{Q}\right)^{2}-2 x_{Q} y_{Q}=r_{Q}^{2}-\frac{2\left(r_{Q}^{3}+a\right)}{d+3 r_{Q}} \tag{5}
\end{equation*}
$$

Using equations (4) and (5), one can obtain L as

$$
L=-\frac{r_{P}\left(r_{Q}^{2}-2\left(r_{Q}^{3}+a\right)\right)}{d+3 r_{Q}}+\frac{r_{Q}\left(r_{P}^{2}-2\left(r_{P}^{3}+a\right)\right)}{d+3 r_{P}}
$$

M may be transformed into the following form:

$$
M=\frac{\left(r_{Q}^{3}+a\right)}{\left(d+3 r_{Q}\right)}-\frac{\left(r_{P}^{3}+a\right)}{\left(d+3 r_{P}\right)}
$$

Finally, $\frac{L}{M}$ can be presented as:

$$
\frac{L}{M}=-\frac{\left(\left(3 r_{P}^{2}+d r_{P}\right) r_{Q}^{2}+\left(d r_{P}^{2}+d^{2} r_{P}+6 a\right) r_{Q}+6 a r_{P}+2 a d\right)}{\left(\left(3 r_{P}+d\right) r_{Q}^{2}+\left(3 r_{P}^{2}+d r_{P}\right) r_{Q}+d r_{P}^{2}-3 a\right)}
$$

To obtain doubling formulas, it is convenient to use formulas for complete arithmetic [8]:

$$
x_{[2] P}=\frac{y_{P}\left(a-x_{P}^{3}\right)}{x_{P}^{3}-y_{P}^{3}}, \quad y_{[2] P}=\frac{x_{P}\left(y_{P}^{3}-a\right)}{x_{P}^{3}-y_{P}^{3}}
$$

Then

$$
r_{[2] P}=x_{[2] P}+y_{[2] P}=-\frac{\left(x_{P} y_{P}^{2}+x_{P}^{2} y_{P}+a\right)}{\left(y_{P}^{2}+x_{P} y_{P}+x_{P}^{2}\right)} .
$$

The nominator $-\left(x_{P} y_{P}^{2}+x_{P}^{2} y_{P}+a\right)$ may be transformed into the form $-\left(x_{P} y_{P}\left(x_{P}+y_{P}\right)+a\right)$ which is equivalent to $-\left(\frac{r_{P}\left(r_{P}^{3}+a\right)}{d+3 r_{P}}+a\right)$. The denominator $\left(y_{P}^{2}+x_{P} y_{P}+x_{P}^{2}\right)$ may be written as $\left(x_{P}+y_{P}\right)^{2}-x_{P} y_{P}$, which is equivalent to $r_{P}^{2}-\frac{r_{P}^{3}+a}{d+3 r_{P}}$. Finally:

$$
r_{[2] P}=\frac{-\left(r_{P}^{4}+4 a r_{P}+a d\right)}{\left(2 r_{P}^{3}+d r_{P}^{2}-a\right)}
$$

4.2. Computing 2-isogenies on a generalized Hessian curve using compression function of degree 2 . This subsection will present how to compute 2-isogeny on a generalized Hessian curve using a point compression.

First of all, the compression of point $P=\left(x_{P}, y_{P}\right)$, where $P \in E_{G H}(\mathbb{K})$ in affine coordinates may be represented as $f(P)=x_{P}+y_{P}$, so for point $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ in projective coordinates, its compression may be presented as $\left(X_{P}+Y_{P}: Z_{P}\right)$.

Several lemmas need to be proved before formulas for 2-isogeny computation on a generalized Hessian curve will be presented.

Lemma 1. On a generalized Hessian curve, every point of order 2 may be presented as (α, α) in affine coordinates, where α is any root of the polynomial $w(s)=2 s^{3}-d s^{2}+a$.

Proof. For every point $t_{Q}=(\alpha, \beta)$ of order 2 equality $P=-P$ holds. Because for every point $P=\left(x_{P}, y_{P}\right) \in E_{T H}(\mathbb{K})$ holds that $-P=\left(y_{P}, x_{P}\right)$ in affine coordinates, then for point t_{Q} must hold $\alpha=\beta$. Then must also hold $2 \alpha^{3}+a=d \alpha^{2}$, which is equivalent to $2 \alpha^{3}-d \alpha^{2}+a=0$, so α must be any root of the polynomial $2 s^{3}-d s^{2}+a$ in the field \mathbb{K}.

Lemma 2. Coefficients of the generalized Hessian curve $E_{G H}^{\prime} / \mathbb{K}$, which is 2-isogenous to the curve $E_{G H} / \mathbb{K}$ are equal to $a^{\prime}=a^{2}, d^{\prime}=\frac{-d \alpha+6}{\alpha^{2}}$, where the kernel of the isogeny ϕ is the point $T_{Q}=(\alpha, \alpha)$ of order 2.

Proof. Let ℓ be the degree of isogeny $\phi, n=\ell-1$, and let $F=\{(1:-1: 0)\} \cup \sum_{i=1}^{n}\left\{\left(u_{i}, v_{i}\right)\right\}$ be the kernel of the isogeny ϕ. Then using the general formula for coefficients of the ℓ-isogenous generalized Hessian curve $E_{G H}$, where the kernel of ℓ-isogeny is $F=\{(1:-1: 0)\} \cup \sum_{i=1}^{n}\left\{\left(u_{i}, v_{i}\right)\right\}$,
the curve coefficients are equal to

$$
\begin{gather*}
a^{\prime}=a^{\ell} \tag{6}\\
d^{\prime}=\left((1-2 n) d+6 \sum_{i=1}^{n} \frac{u_{i}^{2}}{v_{i}}\right) \prod_{i=1}^{n} u_{i} \tag{7}
\end{gather*}
$$

Because in the case of 2-isogeny $F=\{(1:-1: 0),(\alpha, \alpha)\}$, then $a^{\prime}=a^{2}$, $d^{\prime}=-d \alpha+6 \alpha^{2}$.

Lemma 3. If T_{Q} is the point of order 2, then

$$
f\left(P+T_{Q}\right)=A\left(f(P), f\left(T_{Q}\right)\right) / 2
$$

where $A\left(f(P), f\left(T_{Q}\right)\right)$ is a rational function.
Proof. The differential addition $f\left(P+T_{Q}\right)+f\left(P-T_{Q}\right)$ may be presented by some rational function $A\left(f(P), f\left(T_{Q}\right)\right)$. If a point T_{Q} is of order 2 , then $f\left(P+T_{Q}\right)=f\left(P-T_{Q}\right)$ and therefore $f\left(P+T_{Q}\right)=A\left(f(P), f\left(T_{Q}\right)\right) / 2$.

Theorem 5. Point evaluation $\phi(P)$ by the isogeny $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$ with the kernel $F=\left\{(1:-1: 0), T_{Q}\right\}$, using formulas from Section 3, is equal to

$$
\phi(P)=\left(x_{P} x_{P+T_{Q}}, y_{P} y_{P+T_{Q}}\right)
$$

where $T_{Q}=(\alpha, \alpha), P=\left(x_{P}, y_{P}\right)$ and $P+T_{Q}=\left(x_{P+T_{Q}}, y_{P+T_{Q}}\right)$.
Lemma 4. Let $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$, where $P, Q \in E_{G H}(\mathbb{K})$. If $m=x_{P} x_{Q}+y_{P} y_{Q}$ and $n=y_{P} x_{Q}+y_{Q} x_{P}$, then $r_{P} r_{Q}=m+n$, where $r_{P}=f(P)=x_{P}+y_{P}$ and $r_{Q}=f(Q)=x_{Q}+y_{Q}$.

Proof. Because $r_{P}=x_{P}+y_{P}$ and $r_{Q}=x_{Q}+y_{Q}$, then $r_{P} r_{Q}=y_{P} y_{Q}+$ $x_{P} x_{Q}+y_{P} x_{Q}+y_{Q} x_{P}=m+n$.

Lemma 5. The number $m=x_{P} x_{Q}+y_{P} y_{Q}$ is the root of polynomial $G(s)=3 r_{P} r_{Q} s^{2}-3 r_{P}^{2} r_{Q}^{2} s-3 t_{R} r_{P} r_{Q}-\left(d t_{P}-a\right)\left(d t_{Q}-a\right)$, where $t_{R}=t_{P} t_{Q}$.

Proof. Let $x_{P}^{3}+y_{P}^{3}+a=d x_{P} y_{P}$ and $x_{Q}^{3}+y_{Q}^{3}+a=d x_{Q} y_{Q}$. Then $x_{P}^{3}+y_{P}^{3}=d x_{P} y_{P}-a$ and $x_{Q}^{3}+y_{Q}^{3}=d x_{Q} y_{Q}-a$. If one multiplies these formulas, then

$$
\begin{aligned}
\left(x_{P}^{3}+y_{P}^{3}\right)\left(x_{Q}^{3}+y_{Q}^{3}\right) & =x_{P}^{3} x_{Q}^{3}+y_{P}^{3} y_{Q}^{3}+x_{Q}^{3} y_{P}^{3}+x_{P}^{3} y_{Q}^{3} \\
& =\left(d x_{P} y_{P}-a\right)\left(d x_{Q} y_{Q}-a\right) .
\end{aligned}
$$

Now one can substitute $t_{P}=x_{P} y_{P}$, which may be computed using formula (3) as $B\left(r_{P}\right)$ and $t_{Q}=x_{Q} y_{Q}$ as $B\left(r_{Q}\right)$. Then $t_{R}=t_{P} t_{Q}=x_{P} x_{Q} y_{P} y_{Q}$.
In the next step

$$
\begin{aligned}
& x_{P}^{3} x_{Q}^{3}+y_{P}^{3} y_{Q}^{3}+x_{Q}^{3} y_{P}^{3}+x_{P}^{3} y_{Q}^{3} \\
&=\left(y_{P} y_{Q}+x_{P} x_{Q}\right)\left(\left(y_{P} y_{Q}+x_{P} x_{Q}\right)^{2}-3 y_{P} y_{Q} x_{P} x_{Q}\right) \\
& \quad+\left(y_{P} x_{Q}+y_{Q} x_{P}\right)\left(\left(y_{P} x_{Q}+y_{Q} x_{P}\right)^{2}-3 y_{P} y_{Q} x_{P} x_{Q}\right) \\
&= m\left(m^{2}-3 t_{R}\right)+n\left(n^{2}-3 t_{R}\right)=\left(d x_{P} y_{P}-a\right)\left(d x_{Q} y_{Q}-a\right) .
\end{aligned}
$$

Because $n=r_{P} r_{Q}-m$, then

$$
\begin{aligned}
& m\left(m^{2}-3 t_{R}\right)+\left(r_{P} r_{Q}-m\right)\left(\left(r_{P} r_{Q}-m\right)^{2}-3 t_{R}\right) \\
& \quad=3 r_{P} r_{Q} m^{2}-3 r_{P}^{2} r_{Q}^{2} m-3 t_{R} r_{P} r_{Q}+r_{P}^{3} r_{Q}^{3}=\left(d x_{P} y_{P}-a\right)\left(d x_{Q} y_{Q}-a\right) .
\end{aligned}
$$

It means that m is a root of the polynomial

$$
G(s)=3 r_{P} r_{Q} s^{2}-3 r_{P}^{2} r_{Q}^{2} s-3 t_{R} r_{P} r_{Q}-\left(d t_{P}-a\right)\left(d t_{Q}-a\right) .
$$

Lemma 6. $m=x_{P} x_{Q}+y_{P} y_{Q}$ is the root of the polynomial $H(s)=s^{3}-$ $3 t_{R} s-d^{\prime} t_{R}+a^{\prime}$.

Proof. According to Lemma 2, if $P=\left(x_{P}, y_{P}\right), Q$ is 2-torsion point equal to $Q=\left(x_{Q}, y_{Q}\right)$, then point $P_{3}=\left(x_{R}, y_{R}\right)$, where $r_{R}=x_{R}+y_{R}$ and $x_{R}=x_{P} x_{Q}$, $y_{R}=y_{P} y_{Q}$, lies on the curve $E_{G H}^{\prime}: x^{3}+y^{3}+a^{\prime}=d^{\prime} x y$, where a^{\prime} and d^{\prime} are given by Equations (6) and (7) respectively. Moreover, it holds that $r_{R}=x_{R}+y_{R}=$ $x_{P} x_{Q}+y_{P} y_{Q}=m$. Making some transformations, one can obtain

$$
\begin{aligned}
x_{R}^{3}+y_{R}^{3} & =\left(x_{R}+y_{R}\right)\left(\left(x_{R}+y_{R}\right)^{2}-3 x_{R} y_{R}\right) \\
& =m\left(m^{2}-3 t_{R}\right)=d^{\prime} x_{R} y_{R}-a^{\prime}=d^{\prime} t_{R}-a^{\prime} .
\end{aligned}
$$

So finally

$$
m^{3}-3 t_{R} m-d^{\prime} t_{R}+a^{\prime}=0
$$

and m is a root of the polynomial $H(s)=s^{3}-3 t_{R} s-d^{\prime} t_{R}+a^{\prime}$.

The previous lemmas lead to the following theorem.
Theorem 6. If $m=y_{P} y_{Q}+x_{P} x_{Q}$, then m is the only root of the polynomial $J(s)=3 r_{P} r_{Q} H(s)-G(s)\left(s+r_{P} r_{Q}\right)$ and by definition $r_{R}=m$.

Proof. Let us make the following transformations

$$
\begin{aligned}
J(s)= & G(s)-s G(s)+3 r_{P} r_{Q} H(s) \\
= & (1-s)\left(3 r_{P} r_{Q} s^{2}-3 r_{P}^{2} r_{Q}^{2} s-3 t_{R} r_{P} r_{Q}-\left(d t_{P}-a\right)\left(d t_{Q}-a\right)\right) \\
& +3 r_{P} r_{Q}\left(s^{3}-3 t_{R} s-d^{\prime} t_{R}+a^{\prime}\right) \\
= & 3 r_{P} r_{Q} s^{2}-3 r_{P}^{2} r_{Q}^{2} s-3 t_{R} r_{P} r_{Q}-\left(d t_{P}-a\right)\left(d t_{Q}-a\right) \\
& -3 r_{P} r_{Q} s^{3}+3 r_{P}^{2} r_{Q}^{2} s^{2}+3 t_{R} r_{P} r_{Q} s+s\left(d t_{P}-a\right)\left(d t_{Q}-a\right) \\
& +3 r_{P} r_{Q} s^{3}-9 r_{P} r_{Q} t_{R} s-3 r_{P} r_{Q} d^{\prime} t_{R}+3 r_{P} r_{Q} a^{\prime} \\
= & \left(a^{2}-a d t_{P}-a d t_{Q}+d^{2} t_{P} t_{Q}+2 r_{P}^{3} r_{Q}^{3}-6 r_{P} r_{Q} t_{R}\right) s \\
& +a^{2} r_{P} r_{Q}-a d r_{P} r_{Q} t_{P}-a d r_{P} r_{Q} t_{Q}+d^{2} r_{P} r_{Q} t_{P} t_{Q} \\
& +3 a p r_{P} r_{Q}-3 d p r_{P} r_{Q} t_{R}-r_{P}^{4} r_{Q}^{4}+3 r_{P}^{2} r_{Q}^{2} t_{R} .
\end{aligned}
$$

Finally

$$
m=\quad r_{R}=\frac{L_{3}}{M_{3}}
$$

where

$$
\begin{aligned}
L_{3}= & -a^{2} r_{P} r_{Q}+a d r_{P} r_{Q} t_{P}+a d r_{P} r_{Q} t_{Q}-d^{2} r_{P} r_{Q} t_{P} t_{Q}-3 a^{\prime} r_{P} r_{Q} \\
& +3 d^{\prime} r_{P} r_{Q} t 3+r_{P}^{4} r_{Q}^{4}-3 r_{P}^{2} r_{Q}^{2} t_{R}
\end{aligned}
$$

and

$$
M_{3}=a^{2}-a d t_{P}-a d t_{Q}+d^{2} t_{P} t_{Q}+2 r_{P}^{3} r_{Q}^{3}-6 r_{P} r_{Q} t_{R}
$$

4.3. 3-isogeny computation. Using birationally equivalence between twisted Hessian and generalized Hessian curves and formulas from [4], formulas for 3isogeny $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$ computation on generalized Hessian curves, where $E_{G H}: x^{3}+y^{3}+a=d x y$ and $E_{G H}^{\prime}: x^{3}+y^{3}+a^{\prime}=d^{\prime} x y$, are as follows:
(1) if the kernel of the isogeny is $F=\left\{(1:-1: 0),(1:-\omega: 0),\left(1:-\omega^{2}: 0\right)\right\}$, then

$$
P^{\prime}=\left(\frac{\omega x^{3}+\omega^{2} y^{3}+a}{x_{P} y_{P}}, \frac{\omega^{2} x^{3}+\omega y^{3}+a}{x y}\right)
$$

and $P^{\prime} \in G H_{a^{\prime}, d^{\prime}}$, where $a^{\prime}=d^{3}-27 a$ and $d^{\prime}=3 d$;
(2) if the kernel of the isogeny is $F=\{(1:-1: 0),(0:-c: 1),(-c: 0: 1)\}$, where $c^{3}=a$, then

$$
\begin{equation*}
P^{\prime}=\left(c^{2} y+c x^{2}+y^{2} x: c^{2} x+c y^{2}+y x^{2}: x_{P} y_{P}\right) \tag{8}
\end{equation*}
$$

and $P^{\prime} \in G H_{a^{\prime}, d^{\prime}}$, where $a^{\prime}=d^{2} c+3 d c^{2}+9 a$ and $d^{\prime}=d+6 c$;
(3) if the kernel of the isogeny is $F=\{(1:-1: 0),(0:-\omega c: 1),(-\omega c: 0: 1)\}$, where $(\omega c)^{3}=a$, then

$$
P^{\prime}=\left(c^{2} \omega^{2} y+c \omega x^{2}+y^{2} x: c^{2} \omega^{2} x+c \omega y^{2}+y x^{2}: x y\right)
$$

and $P^{\prime} \in G H_{a^{\prime}, d^{\prime}}$, where $a^{\prime}=d^{2} c \omega+3 d c^{2} \omega^{2}+9 a$ and $d^{\prime}=d+6 c \omega$;
(4) if the kernel of the isogeny is $F=\left\{(1:-1: 0),\left(0:-\omega^{2} c: 1\right),\left(-\omega^{2} c: 0: 1\right)\right\}$, where $\left(\omega^{2} c\right)^{3}=a$, then

$$
P^{\prime}=\left(c^{2} \omega y+c \omega^{2} x^{2}+y^{2} x: c^{2} \omega x+c \omega^{2} y^{2}+y x^{2}: x y\right)
$$

and $P^{\prime} \in G H_{a^{\prime}, d^{\prime}}$, where $a^{\prime}=d^{2} c \omega+3 d c^{2} \omega^{2}+9 a$ and $d^{\prime}=d+6 c \omega$.
Proof. Points (1) and (2) follow simply from [4]. Moreover, let us note that if $a=c^{3}$, then $a=c_{2}^{3}=(\omega c)^{3}$ and $a=c_{3}^{3}=\left(\omega^{2} c\right)^{3}$. It means that if one substitute c in Equation (8) by c_{2}, c_{3} respectively, then one obtains formulas from points (2), (3) and (4).

Theorem 7. Using the compression function $r_{P}=f_{G H, 2}(P)=\left(x_{P}+y_{P}\right)$ one can write as follows.

If the kernel of the isogeny $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$ is point $(1:-\omega: 0)$ or $\left(1:-\omega^{2}\right.$: $0)$, and $P^{\prime}=\phi(P), r_{P}=f_{G H, 2}(P)$ then

$$
r_{P^{\prime}}=f_{G H, 2}\left(P^{\prime}\right)=\frac{3 a\left(d+3 r_{P}\right)}{r_{P}^{3}+a}-d
$$

Proof. Let $K=(1:-\omega: 0)$ or $K=\left(1:-\omega^{2}: 0\right)$ be the point generating the kernel of the 3 -isogeny. The only rational points having Z-coordinate equal to 0 are $(1:-1: 0)$, which is the neutral element, and $(1:-\omega: 0),\left(1:-\omega^{2}: 0\right)$ which are points of order 3 . If one checks that $Z \neq 0$, one can compute the 3 -isogeny with such kernel.

At first, $r_{P}=x_{P}+y_{P}$, so it means that

$$
r_{P^{\prime}}=\frac{\omega x_{P}^{3}+\omega^{2} y_{P}^{3}+a+\omega^{2} x_{P}^{3}+\omega y_{P}^{3}+a}{x_{P} y_{P}}
$$

Using that

$$
\omega+\omega^{2}=-1
$$

one obtains

$$
r_{P^{\prime}}=\frac{-\left(x_{P}^{3}+y_{P}^{3}\right)+2 a}{x_{P} y_{P}}=\frac{3 a}{x_{P} y_{P}}-d=\frac{3 a\left(d+3 r_{P}\right)}{r_{P}^{3}+a}-d .
$$

Theorem 8. Using the compression function $r_{P}=f_{G H, 2}(P)=\left(x_{P}+y_{P}\right)$ one can write as follows: if the kernel of the isogeny ϕ is point $Q=(0:-c: 1)$ or $Q=(-c: 0: 1)$, where $c^{3}=a$, and $r=f_{G H, 2}(P)$ then

$$
r_{P^{\prime}}=f_{G H, 2}\left(P^{\prime}\right)=\frac{\left(d+3 r_{P}\right)\left(c^{2} r_{P}+c r_{P}^{2}\right)}{r_{P}^{3}+a}-2 c+r_{P}
$$

Proof. Let $K=(0:-c: 1)$ or $K=(-c: 0: 1)$ be the generator of the kernel of the 3 -isogeny. One can compute c as $c=-\frac{K_{X}+K_{Y}}{K_{z}}$. Then one can compute the 3 -isogeny with such kernel as follows.

At first, $r_{P}=x_{P}+y_{P}$, so it means that

$$
\begin{aligned}
r_{P^{\prime}} & =\frac{c^{2} y_{P}+c x_{P}^{2}+y_{P}^{2} x_{P}+c^{2} x_{P}+c y_{P}^{2}+y_{P} x_{P}^{2}}{x_{P} y_{P}} \\
& =\frac{c^{2}\left(x_{P}+y_{P}\right)+c\left(x_{P}^{2}+y_{P}^{2}\right)+x_{P} y_{P}\left(x_{P}+y_{P}\right)}{x_{P} y_{P}} \\
& =\frac{c^{2} r_{P}+c\left(r_{P}^{2}-2 x_{P} y_{P}\right)+x_{P} y_{P} r_{P}}{x_{P} y_{P}} \\
& =\frac{c^{2} r_{P}+c r_{P}^{2}}{x_{P} y_{P}}-2 c+r_{P}=\frac{\left(d+3 r_{P}\right)\left(c^{2} r_{P}+c r_{P}^{2}\right)}{r_{P}^{3}+a}-2 c+r_{P}
\end{aligned}
$$

4.4. Computation of general odd degree isogenies on twisted Hessian curves. Using formulas presented in [4] for computations using a point compression function $f_{G H, 2}(P)$ of isogenies of degree $\ell>3$ seems to be, however possible, very hard and inefficient.

In this case, instead of using formulas presented in [4] alone, in this paper, we proposed a method of adaptation Velú's formulas on the short Weierstrass curve, together with formulas presented in [4].

The main idea may be presented as follows. Because the compression function $f_{G H, 2}(x, y)=x+y$ is additive, at first, the point P, for which one wants to compute an isogeny $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$ and all points belonging to the kernel F of the isogeny, have to be transformed into the short Weierstrass curve $E_{S W}$. At the same time, using formulas from [4], it is possible to compute the coefficients of
the isogenous generalized Hessian curve $E_{G H}^{\prime}$. In the next step, one computes isogenous short Weierstrass curve $E_{S W}^{\prime}$, and the point $P_{S W}^{\prime}$, using isogeny ψ. It should be noted that curves $E_{G H}^{\prime}$ and $E_{S W}^{\prime}$ will be isomorphic. At the next step, it is easy to find the isomorphism between $E_{G H}^{\prime}$ and $E_{S W}^{\prime}$ and therefore, it is easy to transform the point $P_{S W}^{\prime}$ into the point $P_{G H}^{\prime} \in E_{G H}^{\prime}$.

In the Figure 1 we present all transformations necessary to obtain an isogenous generalized Hessian curve $E_{G H}^{\prime}$ using the compression function $f_{G H, 2}$, where the degree ℓ of isogeny is odd and $\ell \geq 5$.

Figure 1. Transformations necessary for obtaining ℓ-isogenous generalized Hessian curve using the compression function $f_{G H, 2}$.

Now we define particular isomorphisms and isogenies, which appear in Figure 1.
(1) Isomorphism $\phi_{1}: E_{G H} \rightarrow E_{T R}$, where $E_{G H} / \mathbb{K}: x^{3}+y^{3}+a=d x y$, $E_{T R} / \mathbb{K}: t^{2}+a_{\triangle} s t+d_{\triangle} t=s^{3}$ and:

$$
a_{\triangle}=\frac{d^{3}}{27^{2}}-\frac{a}{27}, \quad d_{\triangle}=\frac{d}{3} .
$$

For $P_{G H}=\left(x_{P}, y_{P}\right) \in E_{G H}$ with the compression function $f_{G H, 2}\left(P_{G H}\right)=x_{p}+y_{p}=r_{P}$ we have:

$$
f_{T R, 2}\left(\phi_{1}\left(P_{G H}\right)\right)=\frac{-3 a}{f_{G H, 2}\left(P_{G H}\right)+d}=\frac{-3 a}{r_{P}+d}
$$

where the compression function of degree 2 on a triangular curve is equal to $f_{T R, 2}\left(s_{P}, t_{P}\right)=s_{P}$ for $P_{T R}=\left(s_{P}, t_{P}\right) \in E_{T R}(\mathbb{K})$.
(2) Isomorphism $\phi_{2}: E_{T R} \rightarrow E_{S W}$, where $E_{T R} / \mathbb{K}: t^{2}+a_{\triangle} s t+d_{\triangle} t=s^{3}$, $E_{S W} / \mathbb{K}: v^{2}=u^{3}+A u+B$ and

$$
A=\frac{a_{\triangle} d_{\triangle}}{2}-\frac{d_{\triangle}^{4}}{48}, \quad B=\frac{-d_{\triangle}^{2}}{12} A+\frac{a_{\triangle}^{2}}{4}-\frac{d_{\triangle}^{6}}{2^{6}}
$$

For $P_{T R}=\left(s_{P}, t_{p}\right) \in E_{T R}$ with the compression function $f_{T R, 2}\left(P_{T R}\right)=s_{P}$ we have:

$$
f_{S W, 2}\left(\phi_{2}\left(P_{T R}\right)\right)=f_{T R, 2}\left(P_{T R}\right)+\frac{d_{\triangle}^{2}}{12}=s_{P}+\frac{d_{\triangle}^{2}}{12}
$$

where the compression function of degree 2 on a short Weierstrass curve is equal to $u_{P}=f_{S W, 2}\left(u_{P}, v_{P}\right)$ and $P_{S W}=\left(u_{P}, v_{P}\right) \in E_{S W}(\mathbb{K})$.
(3) Isogeny ξ with a kernel $F=\{(0: 1: 0)\} \cup \sum_{i=1}^{n}\left\{Q_{i}=\left(u_{i}, v_{i}\right)\right\}$ from $E_{S W} \rightarrow$ $E_{\overline{S W}}$, where $E_{S W}: v^{2}=u^{3}+A u+B$ and $E_{\overline{S W}}: \bar{v}^{2}=\bar{u}^{3}+\bar{A} \bar{u}+\bar{B}$, and:

$$
\xi\left(u_{p}, v_{p}\right)=\left(\begin{array}{l}
\left.u_{p}+\sum_{Q \in F-\{(0: 1: 0)\}}\left(u_{P+Q}-u_{Q}\right), v_{p}+\sum_{Q \in F-\{(0: 1: 0)\}}\left(v_{P+Q}-v_{Q}\right)\right), ~
\end{array}\right.
$$

where

$$
\begin{gathered}
\bar{A}=(A-5 \alpha), \quad \bar{B}=B-7 \beta \\
\alpha=2 \sum_{Q \in F^{+}}\left(3 \quad u_{P}^{2}+A\right), \quad \beta=2 \sum_{Q \in F^{+}}\left(2 v_{P}^{2}+v_{p}\left(3 v_{P}^{2}+A\right)\right) .
\end{gathered}
$$

For the compression function $f_{\overline{S W}, 2}(\bar{u}, \bar{v})=\bar{u}$ we have

$$
\begin{aligned}
f_{\overline{S W}, 2}\left(\xi\left(u_{P}, v_{P}\right)\right)= & f_{\overline{S W}, 2}\left(u_{P}+\sum_{Q \in F-\{(0: 1: 0)\}}\left(u_{P+Q}-u_{Q}\right), v_{p}+\sum_{Q \in F-\{(0: 1: 0)\}}\left(v_{P+Q}-v_{Q}\right)\right) \\
= & u_{p}+\sum_{Q \in F-\{(0: 1: 0)\}}\left(u_{P+Q}-u_{Q}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{A}=A-5 \alpha, \quad \bar{B}=B-7 \beta \\
\alpha=2 \sum_{Q \in F^{+}}\left(3 \quad u_{Q}^{2}+A\right), \quad \beta=2 \sum_{Q \in F^{+}}\left(5 u_{Q}^{3}+3 A u_{P}+2 B\right) .
\end{gathered}
$$

(4) Isomorphism $\sigma: E_{\overline{S W}} \rightarrow E_{\widehat{S W}}, E_{\overline{S W}}: \bar{v}^{2}=\bar{u}^{3}+\bar{A} \bar{u}+\bar{B}$ and $E_{\widehat{S W}}: \widehat{v}^{2}=$ $\widehat{u}^{3}+\widehat{A} \widehat{u}+\widehat{B}$. Let $\gamma \in \mathbb{K}^{*}$ be a solution of the following system of equations:

$$
\left\{\begin{array}{l}
\gamma^{4} \widehat{A}=\bar{A} \\
\gamma^{6} \widehat{B}=\bar{B}
\end{array}\right.
$$

For $P_{\overline{S W}}=\left(\bar{u}_{P}, \bar{v}_{P}\right) \in E_{\overline{S W}}$ with the compression function $f_{\overline{S W}, 2}\left(P_{\overline{S W}}\right)=$ \bar{u}_{P} we have:

$$
f_{\widehat{S W}, 2}\left(\sigma\left(P_{\widehat{S W}}\right)\right)=f_{\widehat{S W}, 2}\left(\gamma^{2} \bar{u}_{P}, \gamma^{3} \bar{v}_{P}\right)=\gamma^{2} \bar{u}_{P},
$$

where the compression function of degree 2 on $E_{\widehat{S W}}$ is equal to $f_{\widehat{S W}, 2}\left(\hat{u}_{P}, \hat{v}_{P}\right)=\hat{u}$ for $P_{\widehat{S W}}=\left(\hat{u}_{P}, \hat{v}_{P}\right) \in \bar{E}_{\widehat{S W}}(\mathbb{K})$.
(5) Isogeny ψ with a kernel $F=\{(1:-1: 0)\} \cup \sum_{i=1}^{s}\left\{Q_{i}=\left(x_{i}, y_{i}\right)\right.$, $\left.-Q_{i}=\left(y_{i}, x_{i}\right)\right\}$ from $E_{G H}$ to $E_{\overline{G H}}$, where $E_{G H} \quad: \quad x^{3}+y^{3}+a=d x y$ and $E_{\overline{G H}} / \mathbb{K}: \bar{x}^{3}+\bar{y}^{3}+\bar{a}=\bar{d} \overline{x y}$, and:

$$
\begin{aligned}
& \bar{a}=a^{\ell}, \\
& \bar{d}=\left((1-2 n) d+6 \sum_{i=1}^{s}\left(d-a \frac{d+3 r_{i}}{r_{i}^{3}+a}\right)\right) \prod_{i=1}^{s} \frac{r_{i}^{3}+a}{d+3 r_{i}} .
\end{aligned}
$$

and $r_{i}=x_{i}+y_{i}$.
(6) Isomorphism $\zeta_{1}: E_{\overline{G H}} \rightarrow E_{\overline{T R}}$, where $E_{\overline{G H}} / \mathbb{K}: \bar{x}^{3}+\bar{y}^{3}+\bar{a}=\bar{d} \overline{x y}, E_{\overline{T R}} / \mathbb{K}:$ $\bar{t}^{2}+\bar{a}_{\triangle} \bar{s} \bar{t}+\bar{d}_{\triangle} \bar{t}=\bar{s}^{3}$ and:

$$
\bar{a}_{\triangle}=\frac{\bar{d}^{3}}{27^{2}}-\frac{\bar{a}}{27}, \quad \bar{d}_{\triangle}=\frac{\bar{d}}{3} .
$$

(7) Isomorphism $\zeta_{2}: E_{\overline{T R}} \rightarrow E_{\widehat{S W}}$, where $E_{\overline{T R}} / \mathbb{K}: \bar{t}^{2}+\bar{a}_{\triangle} \bar{s} \bar{t}+\bar{d}_{\triangle} \bar{t}=\bar{s}^{3}$, $E_{\widehat{S W}}: \hat{v}^{2}=\hat{u}^{3}+\widehat{A} \hat{u}+\widehat{B}$ and

$$
\widehat{A}=\frac{\bar{a}_{\triangle} \bar{d}_{\triangle}}{2}-\frac{\bar{d}_{\triangle}^{4}}{48}, \quad \widehat{B}=\frac{-\bar{d}_{\triangle}^{2}}{12} \hat{A}+\frac{\bar{a}_{\triangle}^{2}}{4}-\frac{\bar{d}_{\triangle}^{6}}{2^{6}}
$$

(8) Isomorphism $\zeta_{1}^{-1}: E_{\overline{T R}} \rightarrow E_{\overline{G H}}$, where $E_{\overline{T R}} / \mathbb{K}: \bar{t}^{2}+\bar{a}_{\triangle} \bar{s} \bar{t}+\bar{d}_{\triangle} \bar{t}=\bar{s}^{3}$, $E_{\overline{G H}} / \mathbb{K}: \bar{x}^{3}+\bar{y}^{3}+\bar{a}=\bar{d} \overline{x y}$. For $P_{\overline{T R}}=\left(\bar{s}_{P}, \bar{t}_{P}\right) \in E_{\overline{T R}}$ with the compression function $f_{\overline{T R}, 2}\left(P_{\overline{T R}}\right)=\bar{s}_{P}$ we have:

$$
f_{\overline{G H}, 2}\left(\zeta_{1}^{-1}\left(P_{\overline{T R}}\right)\right)=\frac{-\bar{d}_{\triangle} \bar{s}_{P}-3 \bar{a}_{\triangle}}{\bar{s}_{P}},
$$

where the compression function of degree 2 on a generalized Hessian curve is equal to $f_{\overline{G H}, 2}\left(\bar{x}_{P}, \bar{y}_{P}\right)=\bar{x}_{P}+\bar{y}_{P}$ for $P_{\overline{G H}}=\left(\bar{x}_{P}, \bar{y}_{P}\right) \in E_{\overline{G H}}(\mathbb{K})$.
(9) Isomorphism $\zeta_{2}^{-1}: E_{\widehat{S W}} \rightarrow E_{\overline{T R}}$, where $E_{\widehat{S W}}: \widehat{v}^{2}=\widehat{u}^{3}+\widehat{A} \hat{u}+\widehat{B}$ and $E_{\overline{T R}} / \mathbb{K}: \bar{t}^{2}+\bar{a}_{\triangle} \bar{s} \bar{t}+\bar{d}_{\triangle} \bar{t}=\bar{s}^{3}$ For $P_{\widehat{S W}}=\left(\widehat{x}_{P}, \widehat{y}_{P}\right) \in E_{\widehat{S W}}$ with the compression function $f_{\widehat{S W}, 2}\left(P_{\widehat{S W}}\right)=\widehat{x}_{P}=\widehat{r}_{P}$ we have:

$$
f_{\overline{T R}, 2}\left(\kappa_{2}\left(P_{\widehat{S W}}\right)\right)=\widehat{r}_{P}-\frac{\bar{d}^{2}}{12},
$$

where the compression function of degree 2 on a triangular curve is equal to $f_{\overline{T R}, 2}\left(\bar{s}_{P}, \bar{t}_{P}\right)=\bar{s}_{P}$ for $P_{\overline{T R}}=\left(\bar{s}_{P}, \bar{t}_{P}\right) \in E_{\overline{T R}}(\mathbb{K})$.

5. Compression function of degree 6 on generalized Hessian curves using 3 -torsion point

This section will present how to obtain a compression function f of degree 6 using natural symmetries on generalized Hessian curves and action on a 3-torsion point.

Theorem 9 ([7]). If $T_{3} \in E_{G H}(\mathbb{K})$ is a point of order 3 of the form (1:- ω : 0) on a generalized Hessian curve $E_{G H}$, where ω is a root of the polynomial $\omega^{2}+\omega+1$, then the compression function $f_{G H, 6}: E_{G H}(\mathbb{K}) \rightarrow \mathbb{K}$, $f_{G H, 6}(x, y)=x y$ has degree 6 , more exactly $f_{G H, 6}(P)=f_{G H, 6}(Q)$, where $Q=$ $\pm P+[k] T_{3}$ and $k=\overline{0,2}$.

Proof. At first, we will show that $f_{G H, 6}(P)=f_{G H, 6}(Q)$ if and only if $P= \pm Q+[k] T_{3}$, where $k=\overline{0,2}$ and $T_{3}=(1:-\omega: 0)$.

Let us denote $f_{G H, 6}(P)=r_{P}=x y$. Let us assume that $x, y \neq 0$. Then $y=\frac{r_{P}}{x}$ and because $x^{3}+y^{3}+a=d x y$, then

$$
x^{3}+\left(\frac{r_{P}}{x}\right)^{3}+a=d x \frac{r_{P}}{x}
$$

and

$$
g(x)=x^{6}+\left(a-d r_{P}\right) x^{3}+r_{P}^{3}=0
$$

The equation (5) has at most 6 different roots in \mathbb{K}. It is easy to show that if x is one of the roots of this equation, then the other roots are equal to $\omega x, \omega^{2} x, \frac{r_{P}}{x}, \frac{r_{P}}{\omega x}, \frac{r_{P}}{\omega^{2} x}$. It means that

$$
\begin{aligned}
r p & =f_{G H, 6}(x, y)=f_{G H, 6}(y, x)=f_{G H, 6}\left(\omega x, \omega^{2} y\right) \\
& =f_{G H, 6}\left(\omega^{2} y, \omega x\right)=f_{G H, 6}\left(\omega^{2} x, \omega y\right)=f_{G H, 6}\left(\omega y, \omega^{2} x\right)
\end{aligned}
$$

and finally $f_{G H, 6}(P)=f_{G H, 6}(Q)$ if and only if $Q= \pm P+[k] T_{3}$, for $k=\overline{0,2}$.
Remark 3. Let us note that Joye in [8] obtained the compression function $g_{6}(x, y)=x^{3}+y^{3}$ for binary generalized Hessian curves. Indeed, the same compression function works also on generalized Hessian curves over fields of the characteristic greater than 3 . Let us see, that $g_{6}(x, y)=x^{3}+y^{3}=d x y-a=$ $d \cdot f_{G H, 6}(x, y)-a$.

On a generalized Hessian curve, the opposite point to point $P=(x, y)$ equals to $-P=(y, x)$. Let ω be a nontrivial cube root from 1 , which means that $\omega^{2}+\omega+1=0$. Then $T_{3}=(1:-\omega: 0)$ is a point of order 3 and for every point $P \in E_{G H}$ holds $P+T_{3}=\left(\omega X: \omega^{-1} Y: Z\right)$.
5.1. Compression function $f_{G H, 6}(P)=x y$. Now we present formulas for differential addition and doubling for the compression function $f_{G H, 6}$. Let us consider points $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right), P-Q=\left(x_{P-Q}, y_{P-Q}\right)$ and $P+Q=$ $\left(x_{P+Q}, y_{P+Q}\right)$ on the generalized Hessian curve $E_{G H}$, and set $r_{P}=f_{G H, 6}(P)$, $r_{Q}=f_{G H, 6}(Q), r_{P-Q}=f_{G H, 6}(P-Q)$, and $r_{P+Q}=f_{G H, 6}(P+Q)$.
5.1.1. Differential addition. It will be showed that for points P and Q the formula for a differential addition is as follows:

$$
\begin{equation*}
r_{P+Q} r_{P-Q}=\frac{r_{P}^{2} r_{Q}^{2}-a d r_{P} r_{Q}+a^{2} r_{Q}+a^{2} r_{P}}{\left(r_{Q}-r_{P}\right)^{2}} \tag{9}
\end{equation*}
$$

Using Sylvester formulas, one obtains

$$
\begin{aligned}
x_{P+Q} & =\frac{y_{P}^{2} x_{Q}-y_{Q}^{2} x_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}, & y_{P+Q}=\frac{x_{P}^{2} y_{Q}-x_{Q}^{2} y_{P}}{x_{Q} y_{Q}-x_{P} y_{P}}, \\
x_{P-Q} & =\frac{x_{P} x_{Q}^{2}-y_{P}^{2} y_{Q}}{x_{P} y_{P}-x_{Q} y_{Q}}, & y_{P-Q}=\frac{-x_{P}^{2} x_{Q}+y_{P} y_{Q}^{2}}{x_{P} y_{P}-x_{Q} y_{Q}} .
\end{aligned}
$$

After multiplication $r_{P+Q} r_{P-Q}=x_{P+Q} y_{P+Q} x_{P_{Q}} y_{P-Q}$ one obtains $x_{P+Q} y_{P+Q} x_{P_{Q}} y_{P-Q}=\frac{L}{M}$, where

$$
\begin{aligned}
L= & \left(x_{P} y_{P}\right)^{3} y_{Q}^{6}-\left(x_{P} y_{P}\right)\left(x_{Q} y_{Q}\right)^{2} y_{P}^{3} y_{Q}^{3}-x_{P}^{3}\left(x_{Q} y_{Q}\right)^{2}\left(x_{P} y_{P}\right) y_{Q}^{3} \\
& -\left(x_{P} y_{P}\right)^{2}\left(x_{Q} y_{Q}\right) y_{P}^{3} y_{Q}^{3}+\left(x_{P} y_{P}\right)^{2}\left(x_{Q} y_{Q}\right)^{4}-x_{P}^{3}\left(x_{Q} y_{Q}\right)\left(x_{P} y_{P}\right)^{2} y_{Q}^{3} \\
& +\left(x_{Q} y_{Q}\right)^{3} y_{P}^{6}+2\left(x_{P} y_{P}\right)^{3}\left(x_{Q} y_{Q}\right)^{3}+x_{P}^{6}\left(x_{Q} y_{Q}\right)^{3}-\left(x_{P} y_{P}\right) x_{Q}^{3} y_{P}^{3}\left(x_{Q} y_{Q}\right)^{2} \\
& +\left(x_{P} y_{P}\right)^{4}\left(x_{Q} y_{Q}\right)^{2}-x_{P}^{3} x_{Q}^{3}\left(x_{P} y_{P}\right)\left(x_{Q} y_{Q}\right)^{2}-\left(x_{P} y_{P}\right)^{2} x_{Q}^{3} y_{P}^{3}\left(x_{Q} y_{Q}\right) \\
& -x_{P}^{3} x_{Q}^{3}\left(x_{P} y_{P}\right)^{2}\left(x_{Q} y_{Q}\right)+\left(x_{P} y_{P}\right)^{3} x_{Q}^{6}, \\
M= & \left(\left(x_{P} y_{P}\right)-\left(x_{Q} y_{Q}\right)\right)^{4} .
\end{aligned}
$$

Substituting $r_{P}=x_{P} y_{P}$ and $r_{Q}=x_{Q} y_{Q}$, one obtains

$$
\begin{aligned}
L= & r_{P}{ }^{3}\left(x_{Q}^{6}+y_{Q}^{6}\right)-r_{P} r_{Q}{ }^{2}\left(y_{P}^{3} y_{Q}^{3}+x_{P}^{3} y_{Q}^{3}+x_{Q}^{3} y_{P}^{3}+x_{P}^{3} x_{Q}^{3}\right) \\
& -r_{P}{ }^{2} r_{Q}\left(y_{P}^{3} y_{Q}^{3}+x_{P}^{3} y_{Q}^{3}+x_{P}^{3} x_{Q}^{3}+x_{Q}^{3} y_{P}^{3}\right)+r_{P}{ }^{2} r_{Q}{ }^{4} \\
& +r_{Q}{ }^{3} y_{P}^{6}+2 r_{P}{ }^{3} r_{Q}{ }^{3}+x_{P}^{6} r_{Q}{ }^{3}+r_{P}{ }^{4} r_{Q}{ }^{2} .
\end{aligned}
$$

Since points $P, Q \in E_{G H}$, that is

$$
\begin{equation*}
x_{P}^{3}+y_{P}^{3}=d r_{P}-a \tag{10}
\end{equation*}
$$

and

$$
x_{Q}^{3}+y_{Q}^{3}=d r_{Q}-a,
$$

and after the multiplication of these formulas one obtains

$$
y_{P}^{3} y_{Q}^{3}+x_{P}^{3} y_{Q}^{3}+x_{Q}^{3} y_{P}^{3}+x_{P}^{3} x_{Q}^{3}=\left(d r_{P}-a\right)\left(d r_{Q}-a\right) .
$$

It means that

$$
\begin{aligned}
L= & r_{P}{ }^{2} r_{Q}{ }^{4}+2 r_{P}{ }^{3} r_{Q}{ }^{3}+r_{P}{ }^{4} r_{Q}{ }^{2}+r_{P}{ }^{3}\left(x_{Q}^{6}+y_{Q}^{6}\right)+r_{Q}^{3}\left(x_{P}^{6}+y_{P}^{6}\right) \\
& -r_{P} r_{Q}{ }^{2}\left(d r_{P}-a\right)\left(d r_{Q}-a\right)-r_{P}{ }^{2} r_{Q}\left(d r_{P}-a\right)\left(d r_{Q}-a\right) .
\end{aligned}
$$

Using the following equalities

$$
\begin{aligned}
& \left(x_{P}^{3}+y_{P}^{3}\right)^{2}=x_{P}^{6}+y_{P}^{6}+2 x_{P}^{3} y_{P}^{3}=x_{P}^{6}+y_{P}^{6}+2 r_{P}^{3}, \\
& \left(x_{Q}^{3}+y_{Q}^{3}\right)^{2}=x_{Q}^{6}+y_{Q}^{6}+2 x_{Q}^{3} y_{Q}^{3}=x_{Q}^{6}+y_{Q}^{6}+2 r_{Q}{ }^{3},
\end{aligned}
$$

one obtains that

$$
\begin{align*}
& x_{P}^{6}+y_{P}^{6}=\left(d r_{P}-a\right)^{2}-2 r_{P}{ }^{3}, \\
& x_{Q}^{6}+y_{Q}^{6}=\left(d r_{Q}-a\right)^{2}-2 r_{Q}{ }^{3} . \tag{11}
\end{align*}
$$

Using equalities from (11) one obtains that

$$
\begin{aligned}
L= & r_{P}{ }^{2} r_{Q}{ }^{4}+2 r_{P}{ }^{3} r_{Q}{ }^{3}+r_{P}{ }^{4} r_{Q}{ }^{2} r_{P}{ }^{3}\left(\left(d r_{Q}-a\right)^{2}-2 r_{Q}{ }^{3}\right) r_{Q}{ }^{3}\left(\left(d r_{P}-a\right)^{2}-2 r_{P}{ }^{3}\right) \\
& -r_{P} r_{Q}{ }^{2}\left(d r_{P}-a\right)\left(d r_{Q}-a\right)-r_{P}{ }^{2} r_{Q}\left(d r_{P}-a\right)\left(d r_{Q}-a\right)
\end{aligned}
$$

It is worth noting that L may be factorized into form

$$
L=\left(r_{Q}-r_{P}\right)^{2}\left(r_{P}^{2} r_{Q}^{2}-a d r_{P} r_{Q}+a^{2} r_{Q}+a^{2} r_{P}\right) .
$$

Finally:

$$
r_{P+Q} r_{P-Q}=\frac{\left(r_{Q}-r_{P}\right)^{2}\left(r_{P}^{2} r_{Q}^{2}-a d r_{P} r_{Q}+a^{2} r_{Q}+a^{2} r_{P}\right)}{\left(r_{Q}-r_{P}\right)^{4}}
$$

and

$$
r_{P+Q} r_{P-Q}=\frac{r_{P}^{2} r_{Q}^{2}-a d r_{P} r_{Q}+a^{2} r_{Q}+a^{2} r_{P}}{\left(r_{Q}-r_{P}\right)^{2}} .
$$

Remark 4. For the compression function $f_{G H, 6}(P)=r_{P}=x_{P} y_{P}$ represented as $\left(R_{P}: S_{P}\right)$ in $R Z$ coordinates we have

$$
\begin{equation*}
\frac{R_{P+Q} R_{P-Q}}{S_{P+Q} S_{P-Q}}=\frac{R_{P}^{2} R_{Q}^{2}-a d R_{P} R_{Q} S_{P} S_{Q}+a^{2} S_{P} S_{Q}\left(R_{P} S_{Q}+R_{Q} S_{P}\right)}{\left(R_{P} S_{Q}-R_{Q} S_{P}\right)^{2}} . \tag{12}
\end{equation*}
$$

5.1.2. Doubling. Using doubling formulas on the generalized Hessian curve

$$
x_{[2] P}=\frac{y_{P}\left(a-x_{P}^{3}\right)}{x_{P}^{3}-y_{P}^{3}}, \quad y_{[2] P}=\frac{x_{P}\left(y_{P}^{3}-a\right)}{x_{P}^{3}-y_{P}^{3}}
$$

it is possible to present $x_{[2] P} y_{[2] P}=r_{[2] P}$ as a rational function depending on r_{P}, a, d.
After multiplication of $x_{[2] P} y_{[2] P}$ one obtains

$$
x_{[2] P} y_{[2] P}=\frac{x_{P}\left(a-x_{P}^{3}\right) y_{P}\left(y_{P}^{3}-a\right)}{\left(x_{P}^{3}-y_{P}^{3}\right)^{2}}=\frac{x_{P} y_{P}\left(a\left(y_{P}^{3}+x_{P}^{3}\right)-y_{P}^{3} x_{P}^{3}-a^{2}\right)}{\left(x_{P}^{6}-2 x_{P}^{3} y_{P}^{3}+y_{P}^{6}\right)} .
$$

Using equalities (10) and (11), one gets

$$
\begin{aligned}
r_{[2] P} & =\frac{r_{P}\left(a\left(d r_{P}-a\right)-r_{P}^{3}-a^{2}\right)}{\left(d r_{P}-a\right)^{2}-4 r_{P}^{3}} \\
& =\frac{r_{P}\left(a d r_{P}-2 a^{2}-r_{P}^{3}\right)}{\left(d r_{P}-a\right)^{2}-4 r_{P}^{3}}=\frac{a d r_{P}^{2}-2 a^{2} r_{P}-r_{P}{ }^{4}}{\left(d r_{P}-a\right)^{2}-4 r_{P}^{3}} .
\end{aligned}
$$

Remark 5. For the compression function $f_{G H, 6}(P)=r_{P}=x_{P} y_{P}$ represented as $\left(R_{P}: S_{P}\right)$ in $R Z$ coordinates we have

$$
\begin{equation*}
\frac{R_{[2] P}}{S_{[2] P}}=\frac{a d R_{P}^{2} S_{P}^{2}-2 a^{2} R_{P} S_{P}^{3}-R_{P}^{4}}{S_{P}\left(S_{P}\left(d R_{P}-a S_{P}\right)^{2}-4 R_{P}^{3}\right)} . \tag{13}
\end{equation*}
$$

6. Applications of high-degree compression functions in isogeny-based

 cryptographyA method for computing an odd general ℓ-isogeny on a generalized Hessian curve using the compression function $f_{G H, 6}(x, y)=x y$ will be described below.

Using identity

$$
x^{3}+y^{3}=d x y-a
$$

where $r=x y$, and Equation (1), one may finally obtain that

$$
\begin{equation*}
a^{\prime}=a^{\ell}, \quad d^{\prime}=\left((1-2 n) d+6 \sum_{i=1}^{s}\left(\frac{d r_{i}-a}{r_{i}}\right)\right) \prod_{i=1}^{s} r_{i} . \tag{14}
\end{equation*}
$$

Finally, using formula (3), one obtains that

$$
\begin{aligned}
f_{G H, 6}(\phi(P)) & =\prod_{Q \neq(1:-1: 0) \in F} x_{P+Q} y_{P+Q}=\prod_{Q \neq(1:-1: 0) \in F} f_{G H, 6}(P+Q) \\
& =\prod_{i=1}^{s} f_{G H, 6}(P+Q) f_{G H, 6}(P-Q),
\end{aligned}
$$

which may be easily computed using formula (9).

Remark 6. In the case of 2-isogenies, the computations have to be a little different. Point of order 2 on a generalized Hessian curve is always of the form $Q=\left(x_{Q}, y_{Q}\right)$. where $x_{Q}=y_{Q}$. Setting $r_{Q}=x_{Q} y_{Q}=x_{Q}^{2}$ and using generalized Hessian curve equation, one obtains that

$$
2 x_{Q}^{3}+a=d x_{Q}^{2}
$$

is equivalent to

$$
2 r_{Q} x_{Q}+a=d r_{Q}
$$

From the above equation, one obtains that

$$
x_{Q}=\frac{d r_{Q}-a}{2 r_{Q}}
$$

For Q being a point of order 2 , the formula $x_{P+Q} y_{P+Q}+x_{P-Q} y_{P-Q}$ is equal to $2 x_{P+Q} y_{P+Q}=2 r_{P+Q}$. Using Sylvester formula [8] for point addition and evaluating $x_{P+Q} y_{P+Q}+x_{P-Q} y_{P-Q}$, one obtains that

$$
r_{P+Q}=\frac{r_{Q}\left(r_{Q} r_{P}+r_{P}^{2}-x_{Q}\left(d r_{P}-a\right)\right)}{\left(r_{Q}-r_{P}\right)^{2}}
$$

Finally, for the 2-isogeny $\phi_{2}(P)$ with the kernel $F=\left\{(1:-1: 0),\left(x_{Q}: x_{Q}: 1\right)\right\}$ it holds that

$$
\begin{aligned}
f_{G H, 6}\left(\phi_{2}(P)\right) & =r_{P+Q}=\frac{r_{Q}\left(r_{Q} r_{P}+r_{P}^{2}-x_{Q}\left(d r_{P}-a\right)\right)}{\left(r_{Q}-r_{P}\right)^{2}} \\
& =\frac{2 r_{P} r_{Q}^{2}+\left(2 r_{P}^{2}-d^{2} r_{P}+a d\right) r_{Q}+a d r_{P}-a^{2}}{2\left(r_{Q}-r_{P}\right)^{2}} .
\end{aligned}
$$

Remark 7. Let us note that the compression function $f_{G H, 6}(x, y)=x y$ on a Hessian curve (and, thus, on a generalized and twisted Hessian curve) cannot be used for the computation of all possible 3 -isogenies. Therefore, it is useless to the isogeny-based cryptography if the computation of 3-isogenies is necessary. It is worth noting that each 3 -isogeny on Hessian curve [2] is generated by $\left\langle T_{1}\right\rangle=\langle(-1: 0: 1)\rangle$ or $\left\langle T_{2}\right\rangle=\langle(-\omega: 0: 1)\rangle$ or $\left\langle T_{3}\right\rangle=\left\langle\left(-\omega^{2}: 0: 1\right)\right\rangle$ or $\left\langle T_{4}\right\rangle=\langle(1:-\omega: 0)\rangle$. At the same time, $f_{G H, 6}\left(T_{1}\right)=f_{G H, 6}\left(T_{2}\right)=f_{G H, 6}\left(T_{3}\right)=$ $(0: 1)$. Therefore, it is impossible to distinguish a point that should be the kernel of a given 3-isogeny. However, $f_{G H, 6}\left(T_{4}\right)=(-\omega: 0)$.
6.1. Computational cost for operations using the compression function $f_{G H, 6}(x, y)=x y$ on a generalized Hessian curve.
6.1.1. Differential addition and doubling in projective coordinates. Let $a=\left(a_{1}: a_{2}\right)$ and $d=\left(d_{1}: d_{2}\right)$. We can write $a=\left(a_{1} d_{2}: a_{2} d_{2}\right)=\left(a_{L}: M\right)$ and $d=\left(d_{1} a_{2}: a_{2} d_{2}\right)=\left(d_{L}: M\right)$. By (12) for the compression function $f_{G H, 6}(P)=r_{P}=x_{P} y_{P}$ in the projective representation $\left(R_{P}: S_{P}\right)$ the formulae for differential addition is

$$
\frac{R_{P+Q} R_{P+Q}}{S_{P+Q} S_{P-Q}}=\frac{M^{2} R_{P}^{2} R_{Q}^{2}-a_{L} d_{L} R_{P} R_{Q} S_{P} S_{Q}+a_{L}^{2} S_{P} S_{Q}\left(R_{P} S_{Q}+R_{Q} S_{P}\right)}{M^{2}\left(R_{P} S_{Q}-R_{Q} S_{P}\right)^{2}}
$$

If $a=1$ then for $d=\left(d_{1}: d_{2}\right)$ one obtains

$$
\frac{R_{P+Q} R_{P+Q}}{S_{P+Q} S_{P-Q}}=\frac{d_{2}\left(R_{P}^{2} R_{Q}^{2}+S_{P} S_{Q}\left(R_{P} S_{Q}+R_{Q} S_{P}\right)\right)-d_{1} R_{P} R_{Q} S_{P} S_{Q}}{d_{2}\left(R_{P} S_{Q}-R_{Q} S_{P}\right)^{2}}
$$

Using (13) we obtain the formula for doubling

$$
\frac{R_{[2] P}}{S_{[2] P}}=\frac{a_{L} d_{L} R_{P}^{2} S_{P}^{2}-2 a_{L}^{2} R_{P} S_{P}^{3}-M^{2} R_{P}^{4}}{S_{P}\left(S_{P}\left(d_{L} R_{P}-a_{L} S_{P}\right)^{2}-4 M^{2} R_{P}^{3}\right)}
$$

If $a=1$ then for $d=\left(d_{1}: d_{2}\right)$ one obtains

$$
\frac{R_{[2] P}}{S_{[2] P}}=\frac{d_{1} d_{2} R_{P}^{2} S_{P}^{2}-2 d_{2}^{2} R_{P} S_{P}^{3}-d_{2}^{2} R_{P}^{4}}{S_{P}\left(S_{P}\left(d_{1} R_{P}-d_{2} S_{P}\right)^{2}-4 d_{2}^{2} R_{P}^{3}\right)}
$$

6.1.2. Isogeny computations. Let us consider the isogeny $\phi: E_{G H} \rightarrow E_{G H}^{\prime}$ of odd degree $\ell=1+2 s$ with the kernel $F=\{(1:-1: 0)\} \cup \sum_{i=1}^{s}\left\{Q_{i},-Q_{i}\right\}$. Let $f_{G H, 6}\left(Q_{i}\right)=r_{i}=\left(R_{i}: S_{i}\right)$ for $i=\overline{1, s}$. For the application of projective representation of the compression function $f_{G H, 6}(P)=\left(R_{P}: S_{P}\right)$ to the isogenybased cryptography, according to equation (14) one obtains

$$
d^{\prime}=\left((1-4 s) d+6 \sum_{i=1}^{s}\left(\frac{d R_{i}-a S_{i}}{R_{i}}\right)\right) \prod_{i=1}^{s} \frac{R_{i}}{S_{i}}
$$

For $l=5(s=2)$, we have got

$$
\begin{aligned}
d^{\prime} & =\left(-7 d+6\left(\frac{d R_{1}-a S_{1}}{R_{1}}+\frac{d R_{2}-a S_{2}}{R_{2}}\right)\right) \frac{R_{1} R_{2}}{S_{1} S_{2}} \\
& =\frac{-7 d R_{1} R_{2}+6\left(R_{2}\left(d R_{1}-a S_{1}\right)+R_{1}\left(d R_{2}-a S_{2}\right)\right)}{S_{1} S_{2}}
\end{aligned}
$$

Let $a=\left(a_{1}: a_{2}\right)$ and $d=\left(d_{1}: d_{2}\right)$. Writing $a=\left(a_{1} d_{2}: a_{2} d_{2}\right)=\left(a_{L}: M\right)$ and $d=\left(d_{1} a_{2}: a_{2} d_{2}\right)=\left(d_{L}: M\right)$ one gets

$$
\left(d_{1}^{\prime}: d_{2}^{\prime}\right)=\left(\frac{(1-4 s) d_{L}}{M}+6 \sum_{i=1}^{s}\left(\frac{d_{L} R_{i}-a_{L} S_{i}}{M R_{i}}\right)\right) \prod_{i=1}^{s} \frac{R_{i}}{S_{i}} .
$$

In case of $\ell=5$ one gets

$$
\left(d_{1}^{\prime}: d_{2}^{\prime}\right)=\frac{-7 d R_{1} R_{2}+6\left(R_{2}\left(d R_{1}-a S_{1}\right)+R_{1}\left(d R_{2}-a S_{2}\right)\right)}{M S_{1} S_{2}}
$$

If $a=1$ then for $d=\left(d_{1}: d_{2}\right)$ one obtains

$$
\left(d_{1}^{\prime}: d_{2}^{\prime}\right)=\left(\frac{(1-4 s) d_{1}}{d_{2}}+6 \sum_{i=1}^{s}\left(\frac{d_{1} R_{i}-d_{2} S_{i}}{d_{2} R_{i}}\right)\right) \prod_{i=1}^{s} \frac{R_{i}}{S_{i}} .
$$

For $\ell=5$ we get

$$
\left(d_{1}^{\prime}: d_{2}^{\prime}\right)=\frac{-7 d R_{1} R_{2}+6\left(R_{2}\left(d_{1} R_{1}-d_{2} S_{1}\right)+R_{1}\left(d_{1} R_{2}-d_{2} S_{2}\right)\right)}{d_{2} S_{1} S_{2}} .
$$

For $P=\left(X_{P}: Y_{P}: Z_{P}\right)$ the image of P in isogeny ϕ is given by

$$
\phi(P)=\left(\prod_{Q \in F-\{(1:-1: 0)\}} X_{P+Q}: \prod_{Q \in F-\{(1:-1: 0)\}} Y_{P+Q}: \prod_{Q \in F-\{(1:-1: 0)\}} Z_{P+Q}\right)
$$

For the compression function $f_{G H, 6}(P)=r_{P}=x_{P} y_{P}$ represented as $\left(R_{P}: S_{P}\right)$, one gets

$$
\begin{aligned}
f_{G H, 6}(\phi(P))= & \left(\prod_{i=1}^{s} R_{P+Q_{i}} R_{P-Q_{i}}: \prod_{i=1}^{s} S_{P+Q_{i}} S_{P-Q_{i}}\right) \\
= & \left(\prod_{i=1}^{s}\left(R_{P}^{2} R_{Q_{i}}^{2}-a d R_{P} R_{Q_{i}} S_{P} S_{Q_{i}}+a^{2} S_{P} S_{Q_{i}}\left(R_{P} S_{Q_{i}}+R_{Q_{i}} S_{P}\right)\right):\right. \\
& \left.\prod_{i=1}^{s}\left(R_{P} S_{Q_{i}}-R_{Q_{i}} S_{P}\right)^{2}\right) .
\end{aligned}
$$

Let $a=\left(a_{1}: a_{2}\right)$ and $d=\left(d_{1}: d_{2}\right)$. We can write $a=\left(a_{1} d_{2}: a_{2} d_{2}\right)=\left(a_{L}: M\right)$ and $d=\left(d_{1} a_{2}: a_{2} d_{2}\right)=\left(d_{L}: M\right)$. Then one gets

$$
\begin{aligned}
f_{G H, 6}(\phi(P))= & \left(\prod _ { i = 1 } ^ { s } \left(M^{2} R_{P}^{2} R_{Q_{i}}^{2}-a_{L} d_{L} R_{P} R_{Q_{i}} S_{P} S_{Q_{i}}\right.\right. \\
& \left.\left.+a_{L}^{2} S_{P} S_{Q_{i}}\left(R_{P} S_{Q_{i}}+R_{Q_{i}} S_{P}\right)\right): \prod_{i=1}^{s} M^{2}\left(R_{P} S_{Q_{i}}-R_{Q_{i}} S_{P}\right)^{2}\right)
\end{aligned}
$$

If $a=1$ then for $d=\left(d_{1}: d_{2}\right)$ one obtains

$$
\begin{aligned}
f_{G H, 6}(\phi(P))= & \left(\prod _ { i = 1 } ^ { s } \left(d_{2}\left(R_{P}^{2} R_{Q_{i}}^{2}+S_{P} S_{Q_{i}}\left(R_{P} S_{Q_{i}}+R_{Q_{i}} S_{P}\right)\right)\right.\right. \\
& \left.\left.-d_{1} R_{P} R_{Q_{i}} S_{P} S_{Q_{i}}\right): \prod_{i=1}^{s} d_{2}\left(R_{P} S_{Q_{i}}-R_{Q_{i}} S_{P}\right)^{2}\right) .
\end{aligned}
$$

Computational costs for differential addition and doubling operations on a generalized Hessian curve with the compression function $f_{G H, 6}$ are presented in Table 1, where M, S and c mean multiplication, squaring and multiplication by a constant respectively.

Operation	Computational cost
Differential addition (eq. (12))	$19 \mathrm{M}+3 \mathrm{~S}$
Differential addition (eq. (6.1.1))	$11 \mathrm{M}+4 \mathrm{~S}$
Differential addition (eq. (6.1.1))	$7 \mathrm{M}+3 \mathrm{~S}$
Doubling (eq. (13))	$11 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{c}$
Doubling (eq. (6.1.1))	$14 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{c}$
Doubling (eq. (6.1.1))	$14 \mathrm{M}+4 \mathrm{~S}+2 \mathrm{c}$

Table 1. Computational costs for differential addition and doubling

Computational costs for 5 -isogeny computations and evaluation on a generalized Hessian curve with the compression function $f_{G H, 6}$ are presented in Table 2.

Operation	Computational cost
5 -isogenous $E_{H G}$ curve (eq. (6.1.2))	$8 \mathrm{M}+2 \mathrm{c}$
5 -isogenous $E_{H G}$ curve (eq. (6.1.2))	$9 \mathrm{M}+2 \mathrm{c}$
5 -isogenous $E_{H G}$ curve (eq. (6.1.2))	$9 \mathrm{M}+2 \mathrm{c}$
Point evaluation at 5-isogeny (eq. (6.1.2))	$11 \mathrm{M}+3 \mathrm{~S}$
Point evaluation at 5 -isogeny (eq. (6.1.2))	$13 \mathrm{M}+3 \mathrm{~S}$
Point evaluation at 5-isogeny (eq. (6.1.2))	$11 \mathrm{M}+3 \mathrm{~S}$

Table 2. Computational costs for 5-isogeny computations

7. Conclusion

This paper has presented how to obtain differential addition and doubling formula for the compression function of degrees 2 and 6 on generalized Hessian
curves. However, such formulas have been previously presented in [5] and [7]. This time these formulas have been obtained using elementary algebra methods, not the Gröbner basis mechanism. The most important part of this paper is presenting formulas for computing 2,3 , and ℓ-isogenies on generalized Hessian curves using the compression function of degree 2 and formulas for general computing ℓ-isogenies, for $\ell \neq 3$. In the case of the compression function of degree 6 , it is worth noting that computing 3 -isogenies, in this case, is impossible because it is impossible to distinguish a compression of different points of order 3.

As we presented in the paper, it is clear that the compression function of degree 6 is much more convenient for using the isogeny-based cryptography because computation and evaluation of ℓ-isogeny are, in this case, much more efficient than similar computations for the compression function of degree 2. This situation is because the compression function of degree 6 has a multiplicative character, and the compression function of degree 2 has an additive character.

References

[1] D. J. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, In: International Conference on Cryptology and Information Security in Latin America, 2015, 269-194.
[2] F. L. P. Broon and E. Fouotsa, Analogue of Vélu's formulas for computing isogenies over hessian model of elliptic curves, IACR Cryptol. ePrint Arch. (2019), https://eprint.iacr.org/2019/1480.
[3] W. Castryck, T. Lange, C. Martindale, L. Panny and J. Renes, CSIDH: An efficient post-quantum commutative group action, In: International Conference on the Theory and Application of Cryptology and Information Security, 2018, 395-427.
[4] T. Dang and D. Moody, Twisted hessian isogenies, IACR Cryptol. ePrint Arch. (2019), https://eprint.iacr.org/2019/1003.
[5] R. Dryıo, T. Kijko and M. Wroński, Determining formulas related to point compression on alternative models of elliptic curves, Fundamenta Informaticae 169 (2019), 285-294.
[6] R. DryŁo, T. Kijko and M. Wroński, Efficient Montgomery-like formulas for general Huff's and Huff's elliptic curves and their applications to the isogeny-based cryptography, IACR Cryptol. ePrint Arch. (2020), https://eprint.iacr.org/2020/526.pdf.
[7] R. Dryıo, T. Kijko and M. Wroński, High-degree compression functions on alternative models of elliptic curves and their applications, Fundamenta Informaticae 184 (2021), 107-139.
[8] R. R. Farashahi and M. Joye, Efficient arithmetic on Hessian curves, In: International Workshop on Public Key Cryptography, 2010, 243-260.
[9] S. Kim, K. Yoon, Y.-H. Park and S. Hong, Optimized method for computing odd-degree isogenies on Edwards curves, In: International Conference on the Theory and Application of Cryptology and Information Security, 2019, 273-292.
[10] A. Rostovtsev and A. Stolbunov, Public-key cryptosystem based on isogenies, IACR Cryptol. ePrint Arch. (2006), https://eprint.iacr.org/2006/145.pdf.
[11] J. P. Da Silva, R. Dahab and J. López, 2-isogenies between elliptic curves in Hesse model, In: Anais do XVIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, 2018, 57-64.

MICHAL WROŃSKI, TOMASZ KIJKO
FACULTY OF CYBERNETICS
MILITARY UNIVERSITY OF TECHNOLOGY
KALISKIEGO STR. 2, WARSAW
POLAND
E-mail: $\{$ michal.wronski,tomasz.kijko\}@wat.edu.pl

[^0]: Mathematics Subject Classification: 94A60, 14K02, 14H52.
 Key words and phrases: generalized Hessian curves and compression on elliptic curves and isogeny-based cryptography.

