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Arithmetic on generalized Hessian curves using compression
function and its applications to the isogeny-based cryptography

By Michal Wroniski and Tomasz Kijko

Abstract. In this paper, we present formulas for differential addition and doubling
using the compression function fgm,2(P) = zp+yp of degree 2 on a generalized Hessian
curve Egr : 2 +y® +a = dzy, where P = (zp,yp). We use in this context elementary
algebra methods. Moreover, we also present formulas for 2, 3-isogeny, and general
{-isogeny evaluation, using this function. It is worth noting that for the compression
function fam,2, such formulas have not been presented before. On the other hand,
we also use elementary algebra methods for obtaining differential addition and doubling
formulas using the compression function fgm,6(P) = zpyp of degree 6, and we present
formulas for 2 and general ¢-isogeny evaluation using this function.

1. Introduction

Isogeny-based cryptography is one of the most promising fields in post-
quantum cryptography. In the SIKE algorithm (Supersingular Isogeny
Diffie-Hellman) specification, z-line arithmetic on the Montgomery curve is used.
It is worth noting that it is also possible to use other alternative models of elliptic
curves in this context, such as Edwards, twisted Edwards curves, Huff’s curves,
Hessian curves, generalized Hessian curves, and twisted Hessian curves. This pa-
per mainly focuses on applying z-line arithmetic to the Hessian curves family.
We consider the compression function on generalized Hessian curves, given by
fau2(P) = zp + yp, where P = (zp,yp). This compression function may be

easily obtained from the compression function frpg2(P) = y’;—:l

on the twisted
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Hessian curve E7gy and isomorphism between Fgy and Er gy, which is simple co-
ordinates swapping. It is worth noting that formulas for differential addition on
a twisted Hessian curve using the compression function frg 2 have been obtained
in [5] using Grobner basis mechanism. This paper presents algebraic methods for
obtaining differential addition and doubling formulas on the curve Eg gy using the
compression function fgg 2. The application of function fg g 2 into the isogeny-
based cryptography has not been presented before. This paper will show how
to compute 2-isogeny and 3-isogeny, using formulas from [4]. Moreover, for the
computation of isogeny of degree £ > 4, we use the Vélu formula using isomorphic
elliptic curves in the short Weierstrass form.

Even though the application of Vélu formula for the computation of 2-isogeny
on Hessian curves using point representation in full projective coordinates was
presented in [11], we apply Vélu formulas to obtain compression of isogeny eval-
uation formula for a point P given only by its compression fep o(P). Moreover,
we use Vélu formulas only when ¢ # 3.

Unfortunately, it seems that using the compression function f g 2 in isogeny-
based cryptography is reasonable only in the context of SIDH and SIKE protocols,
where consecutive computations of 2 and 3-isogenies are required. In the case,
when it is necessary to compute isogenies of larger degree, like, e.g., in CRS [10]
and CSIDH [3], application of the compression function fgp,2 is challenging and
inefficient because the isogeny evaluation formula for twisted Hessian curves given
in [4] (and thus for generalized Hessian curves) has a multiplicative character.
However, the compression function fgm 2 has additive character.

Then next considered compression function on generalized Hessian curves
presented in this paper is degree 6 function fem6(P) = zpyp. This compression
function has been considered in [7], where presented formulas for differential addi-
tion and doubling have been obtained using computational methods and Grébner
basis mechanism. In this paper, for the compression function fgy e, formulas for
a differential addition and doubling have been derived algebraically. Moreover,
we found the formulas for isogeny computations and point evaluations in the case
of 2 and general ¢-isogeny. In the paper [7] such formulas for isogenies compu-
tation have not been considered. Because of computation of such isogenies has
multiplicative character, the function fgp e could be used in practice in the case
of -isogeny computations, for £ > 5. In the case of £ = 3 our approach of using the
compression function fg g ¢ fails, because for different 3-torsion points P function
fam,6(P) may give the same results, which is inconvenient in our applications.
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Some presented formulas in this paper are not valid if the characteristic of
the field is two and/or three. For simplicity we assume in the whole paper, that
the characteristic of the underlying field is larger than three.

2. Compression functions on elliptic curves

On elliptic curve E over a field K we call a compression function any rational
function f : E(K) — K such that for a point P € E(K) holds f(P) = f(—P).
The degree of a compression function is the number of elements of the kernel of
the map f(P) — f(Q), where P,Q € E(K). If the function f is of degree 2, then
f(P) = f(Q) iff @ = —P. For any compression function f there is induced point
multiplication of values f(P) given by [n]f(P) = f([n]P) for n € Z.

There exist rational functions for differential additions A;(z,y), Az(x,y) €
K(x,y) such that

f(P+Q)+ f(P—-Q) =A(f(P), f(Q)),
f(P+Q)f(P—Q) =A(f(P), f(Q))-

Moreover, there also exists rational function for doubling D(z) € K(z), such that
f([21P) = D(f(P)).

The properties above allow to compute [n]f(P) using the Montgomery ladder
algorithm. We may adopt A(x,y,z) = A1(x,y)) —z or A(z,y,z) = As(z,y)/z in
this algorithm.

Algorithm 1: The Montgomery ladder

Input: f(P) and the binary expansion of n = (ng,...,ng)s
Output: [n]f(P)

zp = f(P); g == D(xp);
fori=%k—-1,...,0do

if n; =1 then

rp = A(mPavaf(P))§
zq = D(zq);

else

rQ = A(xpvav f(P))7
rp = D(:Bp);

end

end

return zp;
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It is worth noting that it is also possible to obtain a compression function
of a degree greater than 2. It is possible if one considers translation 7p : £ —
E,mr(P) = P+ T for a particular chosen point T' € E(K) of order n. Now one
can search for the compression function fo, of degree 2n which is invariant under
involution and translation by T. It means that fs,(P) = fon, (Q) if and only if
Q = +P + [K]T, for k = 0,n — 1. More details may be found in [7].

3. Generalized and twisted Hessian curves

Definition 1. [8] A generalized Hessian curve Egy over a field K is given by
the equation
Egu/K : 2® 4+ 9* + a = dxy,

for a,d € K where a # 0 and d°® # 27a.

The sum of points P = (zp,yp) and Q = (zg,yg) on Egy is given by
formulas:

(1) if P # +Q (point addition)

Pro= YprQ — YHrP TPYQ — THYP \
TQyq — TrYr TQYQ —rPyp |’

(2) if P =Q (point doubling)

oip— (yrle—op) xp(yp—a)
RIP={"F—>5 "3 3 )
Tp —Yp Tp —Yp
The negation of the point P = (zp,yp) is —P = (yp,xp).
In projective coordinates, a generalized Hessian curve is given by the equation

Eon/K : X*+Y?+aZ® =dXYZ.

The neutral element of the addition law is the point at infinity (1 : —1:0). By
swapping X with Z we obtain the equation of twisted Hessian curve in projective
coordinates

Erg/K : aX?*+Y3+ 2% =dXYZ,

and affine coordinates
Brg/K : ax® + % + 13 = day.
The addition law’s neutral element for twisted Hessian curves is the point (0, —1).

The negation of the point P = (zp,yp) is =P = (£, y%)
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The sum of points P = (zp,yp) and Q = (2@, yq) on Ery is given by formulas:
a) if P # £+@Q (point addition)

)

p [ mp—yPTQYQ yPZ/Z), — arprq
+ Q - 2 ) 2
arpyply — Y@ arpYyply — YQ

b) if P = @ (point doubling)

aypx‘} - yP’ aypff?ﬁ —Yyp

Theorem 1. Generalized Hessian curve Eqpy /K is birationally equivalent
to a twisted Hessian curve Erpg /K. The isomorphism ¢ : Eryg — Egpg for
P=(X:Y:Z)€ Ery is given by the equation:

Y(P)=Y(X:Y:2)=(Z:Y:X).

The inverse isomorphism ¢’ : Egyg — Epg for PP = (X' :Y' : Z') € Egy Is
given by the equation:

Y(PY=y' (XY :Z)=(Z":Y": X").

In the next two theorems, we denote by w the primitive cube root of unity
in the field K.

Theorem 2. There is given an elliptic curve Egy in short Weierstrass form
Esw/K : y* = 23 + Ax + B and there is point T € Esw (K) of order 3. Then
one can find isomorphic Egyw /K to the elliptic curve in triangular form Err/K :
72 + dTy + ay = T2, where
(1) d is any root of polynomial W (s) = z5155° — 5;As* — Bs? + A?;

( ) a’
= _ d .
(3) =T 127
4) g=y - 5
PRrROOF. The theorem is the result of allowed coordinates change for elliptic
curves. (]

Corollary 1. There exists an isomorphism v : Egw — Ergr, which trans-
forms the point Psy € Esw(K) into the point Prr € Ergr(K), where

Pr = 1 (Psw) = (,7) = (z — &,y — Eka),
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Theorem 3 (This is Theorem 5.3 in [1]). There is given an elliptic curve
in triangular form Epg/F, : VW (V 4+ dU +aW) = U3. There exists a twisted
Hessian curve Ery /Fy @ (d® — 27a) X3 + Y3 + Z3 = 3dXY Z, which is isomor-
phic to the curve Erg by isomorphism s : Erg — Erp, where (U, V, W)
(U,w(V +dU + aW) — w2V —aW,w? (V +dU + aW) —wV —aW) = (X,Y,Z
The inversion of 1o is the isomorphism w;l : Erg — Ea, where wgl(X, Y, Z)
(X, _ dx+w33’+w"‘z L dX+Y+Z) '

~—

3a

PROOF. The proof may be found in [1], Theorem 5.3. O

Theorem 4. There is given an elliptic curve in triangular form
Erraa/Fy : VW (V +dU +aW) = U3. There exists a generalized Hessian
curve Egy /Fy + X3 + Y3 + (d* — 27a)Z® = 3dXY Z, which is isomorphic to
the curve Epgp by isomorphism s : Erp — Egpg, where o(U =V @ W) =
(W2 (V+dU +aW) —wV —aW : w(V +dU + aW) —w?V —aW : U) = (X
Y : Z). The inversion of 19 is the isomorphism g Y. Ery — Erg, where

— w w2
Gy U XY Z) = (z;de+ YuX :,dZ+31;+X)'

PrOOF. The same as for Theorem 3 with replacing variables X and Z. O
The following remark is the consequence of Theorems 2 and 3.

Remark 1. For elliptic curves in short Weierstrass form FEgy where
3|#Esw (F,) and the point Pgy € Egy given in X Z coordinates Psy = (X : Z),
it is possible to find the point Prg = 92(11(Psw)) (given in X R coordinates (X :
R), where R =Y +7), where Prg = (12X — Zd* : —d(X — ‘f—;)—SaZ) = (X : R).
Inverse transformation from Prp (given by X R coordinates) to Pgw in XZ co-
ordinates is given by Pgy = w;1(¢;1(PTH) = zb;l(aXTH : —(dXrHg +Rry)) =
(12aX1H — d*(dX71H + Rry) : 12(dX71H + Rra)).

Similarly, the remart below, is the consequence of Theorems 2 and 4.

Remark 2. For elliptic curves in short Weierstrass form FEgy where
3|#Esw (F,) and the point Pgyw € Egw given in X Z coordinates Psy = (X : Z),
it is possible to find the point Pgy = 12(¥1(Psw)) given in RZ coordinates
(R=X+Y), where Pog = (—d(Z — %) —3aX :12Z — Xd?) = (R : Z). Inverse
transformation from Pgp (given by RZ coordinates) to Psw (given by X Z coor-
dinates) is given by Psy = w;l(wgl(PGH) = w;l(aZGH : —(dZgu + Ran)) =
(12aZgy — d*(dZgu + Rew) : 12(dZcu + Ren))-

The application of compression functions in isogeny-based cryptography is
presented in [9], in the context of compression functions of degree 8 on Edwards
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curves. Similarly, the application of compression functions of degree 2 on Huff’s
curves in the isogeny-based cryptography is presented in [6]. We will focus on
applying the compression function feme(z,y) = zy on the generalized Hes-
sian curve. The multiplicative character of formula (3) favors the compression
function fom e for applications in isogeny-based cryptography. Let us note that
faro(z,y) = x +y is strictly additive and, therefore, applying this compression
function to formula (3) seems to be much more challenging and inefficient.

We transformed the formulas for general ¢-isogeny on a twisted Hessian curve
from [4] into their equivalent formulas on generalized Hessian curves.

Let Erg : az® +y*> + 1 = day and Efy ¢ d2® +y* + 1 = d'zy, and
let ¢ be the degree of the isogeny ¢ : Eryg — Efrg, n = { — 1, and let
F = {(0,-1)} U >, {(u;,7;)} be the kernel of the isogeny ¢. Then, us-
ing the general formula for coefficients of an ¢-isogenous twisted Hessian curve

. . . . ,
Erw, the coefficients of the isogenous generalized Hessian curve E7.,; are equal

(1-2n)d+6 7,
toa =a',d = O

Using birationally éah?\;alence between generalized Hessian and twisted Hes-
sian curve, coefficients of an f-isogenous generalized Hessian curve may be com-
puted as a’ = af,d" = ((1 —2n)d+6%" :—?) [T, u;, where the kernel of the
isogeny is equal to F = {(1: =1:0)} U Y " | {(ui, v;)}.

Using the fact, that if point @ = (u;,v;) belongs to the kernel F', then
—@Q = (v;,u;) also belongs to this kernel, and for odd £ = 2s+1 it may be written
that

,_ ~ (up | v\ T
d = (1—2n)d+6z U—l—i—u—l Huivi
i=1 i=1
s u‘:’—i-vf s
= ((1 — Qn)d—l—GZ (W)) Huzvz (1)
i=1

i=1

Similarly, the equation for evaluation of degree ¢ isogeny, for ¢ # 3, [4, Theorem
5] on a twisted Hessian curve may be easily transformed into the same form on a
generalized Hessian curve:

P(P) = (HQ;&(LA:O)GF p+@s [lox—1:0)er yP+Q) ;

where ¢ : Egy — E¢py-
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4. Compression function of degree 2 on generalized Hessian curves

Let us define the compression function on a generalized Hessian curve of
degree 2 given by feu2(P) = feu2(zp,yp) = zp + yp. At first, it will be
proved that fgm 2(P) has indeed degree 2.

ProoF. For P = (zp,yp) € Egu(K) set rp = fau2(P) = xzp + yp. Then
yp =rp —xp and then Egy equation

:E?j; +y133 +a=dzpyp
can be transformed into:
5+ (rp —xp)® +a=dep(rp —xp),
which may be simplified to the form
3rpas +deh — 3rhrp —drprp + 16 +a = 0.

If this equation is satisfied by zp, then, because the degree of the equation is
equal to 2, the second root is rp — xp, which means that the only points, for
which holds rp = xp + yp and 3rprp + dm% - 37"%,1‘}9 —drpxp + rf’p +a =0 are
points P = (xp,yp) and —P = (yp,zp). O

4.1. Obtaining formulas for point doubling and points addition on gen-
eralized Hessian curves using the compression function fopo(z,y) of
degree d = 2. Let r = fama(x,y) = x + y be the compression function on
a generalized Hessian curve. Using Sylvester formulas for points addition on a
generalized Hessian curve

YprQ — Yorp ahyQ — THYP

TP+Q = Yyp+Q =
97 2qyo — Tpyp’ @

TQYQ — Tpyp’

it is possible to write the sum of foy 2(P+Q)+ fau,2(P—Q), where P = (zp,yp)
and Q = (zq,yg) in the following form:

fer2(P+ Q)+ feu2P—Q) = £

_ —yryo’—zryq’+yr’yo+zriygtroyr’—zq yr—zpag’+rp 1
TQYQ—TPYP :

Using that 7p = zp + yp and rg = g + Yo, the nominator may be easily
transformed into the form:

—TP(yQ2 + QCQQ) + TQ(ZUPQ +xp?).
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Using a generalized Hessian curve equation and putting r = x + y and t = xy,

one can obtain that if
23+ 93 +a = day,

then

(z +y)((z+y)* = 3zy) + a = day.

Putting ¢t = zy the Equation (2) is equivalent to
3 —3rt+a=dt

and finally:
L
d+ 3r

Putting tp = zpyp and tg = xQYg, one can write

2

yp® +xp® = (xp +yp)’ — 22pyp = 1P —

and
2

Yo® +1q” = (xg +yQ)* — 2xquq =15 —

Using equations (4) and (5), one can obtain L as

L=-—

2(rp +a)
d+37“P

2(rd) + a)

d—|—37"Q '

rp(rg — 2(r3 +a)) rQ(r%—Q(T‘;’;—i—a)).

d+3rg d+3rp

M may be transformed into the following form:

b ta)  (h+a)

(d+3rg) (d+3rp)

Finally, % can be presented as:

L ((3r% + drp)rcz2 + (dr + d*rp + 6a)rg + 6arp + 2ad)

M ((3rp + d)rg2 + (3r% + drp)ro + dr — 3a)

To obtain doubling formulas, it is convenient to use formulas for complete

arithmetic [8]:

sz:7yp(a—x?j3) Yprip = zply
(2] a3 =3 (2] 23,
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Then
(zpyp + zpyp + a)
A T R

The nominator —(zpy% + z%yp + a) may be transformed into the form

3
— (zpyp(zp +yp) + a) which is equivalent to — re(rp+a) | oy The denominator
d+3rp
y% + xpyp + x2) may be written as (xp + yp)? — zpyp, which is equivalent to
P P
3
r% — dr_f;‘; Finally:

—(r}p + 4arp + ad)
(2r3 + dr? — a)

T21P

4.2. Computing 2-isogenies on a generalized Hessian curve using com-
pression function of degree 2. This subsection will present how to compute
2-isogeny on a generalized Hessian curve using a point compression.

First of all, the compression of point P = (xp,yp), where P € Egy(K) in
affine coordinates may be represented as f(P) = xp + yp, so for point
P = (Xp:Yp: Zp) in projective coordinates, its compression may be presented
as (Xp +Yp: Zp).

Several lemmas need to be proved before formulas for 2-isogeny computation
on a generalized Hessian curve will be presented.

Lemma 1. On a generalized Hessian curve, every point of order 2 may be
presented as (a,«) in affine coordinates, where « is any root of the polynomial
w(s) =253 —ds? +a.

PRrROOF. For every point tg = (o, ) of order 2 equality P = —P holds.
Because for every point P = (zp,yp) € Erp(K) holds that —P = (yp,xp) in
affine coordinates, then for point {9 must hold o = 3. Then must also hold
20 + a = da?, which is equivalent to 20 — da? 4+ a = 0, so & must be any root

of the polynomial 2s® — ds? + a in the field K. O
Lemma 2. Coefficients of the generalized Hessian curve E¢,; /K, which is
2-isogenous to the curve Egg /K are equal to o' = a?,d' = _da"{"fs, where the
kernel of the isogeny ¢ is the point Ty = («, cv) of order 2.
PROOF. Let ¢ be the degree of isogeny ¢, n = £ — 1, and let

F ={1:-1:0}U>", {(u;,v;)} be the kernel of the isogeny ¢. Then
using the general formula for coefficients of the /-isogenous generalized Hessian
curve Egp, where the kernel of (-isogeny is F'= {(1: —1:0)} U > " | {(ui,v:)},
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the curve coefficients are equal to

J - <(12n)d+6i1f> ﬁu (7)

i=1 i=1

Because in the case of 2-isogeny F = {(1 : —1 : 0),(a,«)}, then o’ = a?,
d' = —da + 602 O

Lemma 3. If Ty is the point of order 2, then

f(P+Tq) = A(f(P), [(Tq))/2,

where A(f(P), f(Tg)) is a rational function.

PrROOF. The differential addition f(P + Tg) + f(P — T) may be presented
by some rational function A(f(P), f(Tg)). If a point Tg is of order 2, then
f(P+1Tg) = f(P—1Tg) and therefore f(P +Tq) = A(f(P), f(Tq))/2. O

Theorem 5. Point evaluation ¢(P) by the isogeny ¢ : Eqy — E¢py with
the kernel F = {(1: —1:0),Tg}, using formulas from Section 3, is equal to

@(P) = (zpxpity, YPYP+T,) »

where TQ = (O[,Oé), P= (JTP’ZJP) and P+TQ = (IP+TQ7?JP+TQ)~

Lemma 4. Let P = (zp,yp) and Q = (2¢g,yq), where P,Q € Equ(K).
If m = zpzg + ypyg and n = ypxrg + yorp, then rprg = m + n, where
rp=f(P)=xzp+yp and rqg = f(Q) = zg + yo.

PROOF. Because rp = zp + yp and rqo = xg + yg, then rprg = ypyg +
rprQ +YpPTQ + Yyorp = m+n. O

Lemma 5. The number m = xprg + ypyq is the root of polynomial
G(s) = 3rprqos® — 3rprgs — 3trrprq — (dtp — a) (dtq — a), where tp = tptq.

PROOF. Let 73 + y3 + a = dzpyp and x3Q + y% +a = drgyg. Then
3 +y3 = dzpyp —a and x% —l—y% = dzgyg —a. If one multiplies these formulas,
then

(2b +yb) (24 +yb) = wpady + ypyd +xhyp +2hyd
= (dzpyp — a) (dxgyo — a) .
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Now one can substitute tp = zpyp, which may be computed using formula (3)
as B(rp) and tg = xQyq as B(TQ). Then tp =tptg = TPpTQYPYQ-
In the next step

ThTd + ypyd + THUP + Ty
= (yryq + zprrq) ((yPYg + TPrQ)* — 3YPYQTPrQ)
+ (ypzq +yorp) ((yprQ + yorpr)? — 3YPYQrPLQ)
=m(m? — 3tg) + n(n* — 3tg) = (drpyp — a) (drgyg — a) .

Because n = rprg — m, then

m(m?* — 3tg) + (rprg — m)((rprg —m)? — 3tg)

= 3rprom? — ST%Tém — 3trrprQ + Ti’;r% = (dzpyp — a) (dzgyg —a).
It means that m is a root of the polynomial

G(s) = 3rprgs® — 37“1237"225 —3tgrprg — (dtp —a) (dtg — a) . O

Lemma 6. m = zpxg + ypyq is the root of the polynomial H(s) = s> —

3trs —d'tgr +a’.

PROOF. According to Lemma 2, if P = (xp,yp), @ is 2-torsion point equal
to @ = (2@, yq), then point P3 = (xr,yr), where rg = xgp+yr and g = zpxq,
YR = YpPYQ, lies on the curve B : 23 +y® +a’ = d'zy, where o’ and d’ are given
by Equations (6) and (7) respectively. Moreover, it holds that rg = g + yr =
rpxg + ypyg = m. Making some transformations, one can obtain

ok +yh = (xr+yr) (Tr +yr)* — 32rYR)

=m(m? —3tg) =dazpyr —a' =d'tgr —d.

So finally

m2 —3tgm —d'tp +d =0

and m is a root of the polynomial H(s) = s3 — 3tgs — d'tp +a'. O
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The previous lemmas lead to the following theorem.

Theorem 6. If m = ypyg+2xpxg, then m is the only root of the polynomial
J(s) =3rproH(s) — G(s)(s+rprg) and by definition rgp = m.

PROOF. Let us make the following transformations

J(s) = G(s) — sG(s) + 3rproH(s)

= (1—3) (3rprgs* — 37"%7"%5 — 3tgrprg — (dtp — a) (dtg — a))
+3rpro (53 —3trs —d'tg +d')

= 3rpros® — 37"%37‘%5 — 3tgrprg — (dtp —a) (dtg — a)
— 3rpros® + 37’%7"2252 + 3trrpros + s(dtp —a) (dtg — a)
+ 3rpros® — 9rprotrs — 3rprod'ty + 3rprod

= (a* — adtp — adtg + thth + QTSPT% — 6rprotr)s
+ a27’prQ —adrprotp — adrprgtg + dQTpT‘QtPtQ
+ 3aprprg — 3dprprotr — 7"4Pré + 3T%rét3.

Finally

where

Ly = —a27“prQ + adrprgtp 4+ adrprgtg — dQ’I“pTQtPtQ —3d'rprg
+ 3d’7‘per3 + T4PT’4Q — 31"?37“%153

and
My =a® — adtp — adtg + d2tth + 27“?;,7”% — 6rprotg. ([l

4.3. 3-isogeny computation. Using birationally equivalence between twisted

Hessian and generalized Hessian curves and formulas from [4], formulas for 3-

isogeny ¢ : Egm — Ef computation on generalized Hessian curves, where

Ecuy : 2*+y*+a=dry and Ey : 23 +y3 + d = d'zy, are as follows:

(1) if the kernel of the isogeny is F' = {(1: =1:0),(1 : —w : 0), (1 : —w? : 0)},
then

P (wx?’ +w?yP +a wied+wyd+ a)
Tpyp ’ Ty

and P’ € GHy 4, where @/ = d® — 27a and d’ = 3d;
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(2) if the kernel of the isogeny is F = {(1:—=1:0),(0: —¢: 1),(—c:0: 1)},
where ¢ = a, then
P = (02y +ca® + y2x x4 cy2 + ny : xpyp) (8)

and P’ € GH,r 4, where @’ = d?*c + 3dc? + 9a and d’ = d + 6¢;

(3) if the kernel of the isogeny is F = {(1: =1:0),(0: —wc:1),(—wc:0:1)},
where (wc)? = a, then

P = (Fw’y + cwz® + y?x : Pw’a + awy® + ya® : ay)

and P’ € GHyr 4, where @/ = d?cw + 3dc*w? 4+ 9a and d' = d + 6cw;
(4) if the kernel of the isogeny is F' = {(1: —1:0),(0: —w?c: 1), (—w?c:0:1)},
where (w?c)3 = a, then

P = (czwy + cw?z? + y2x : Cwx + cw2y2 + y:v2 : a:y)

and P’ € GHy 4, where o/ = d*cw + 3dc*w? 4+ 9a and d' = d + 6cw.

PRrROOF. Points (1) and (2) follow simply from [4]. Moreover, let us note
that if @ = ¢3, then a = ¢§ = (we)? and a = ¢ = (w?c)®. It means that if one
substitute ¢ in Equation (8) by c¢g, c3 respectively, then one obtains formulas from

points (2), (3) and (4). O

Theorem 7. Using the compression function rp = fau2(P) = (zp + yp)
one can write as follows.

If the kernel of the isogeny ¢ : Eqy — Efyy is point (1: —w : 0) or (1: —w? :
0), and P’ = ¢(P),rp = fGH,Q(P) then

rp = fGH,2(P/) = w —d
PROOF. Let K = (1: —w:0) or K = (1 : —w? : 0) be the point generating
the kernel of the 3-isogeny. The only rational points having Z-coordinate equal
to 0 are (1 : —1 : 0), which is the neutral element, and (1 : —w : 0), (1 : —w? : 0)
which are points of order 3. If one checks that Z # 0, one can compute the
3-isogeny with such kernel.
At first, rp = zp + yp, so it means that

wx?}p +w2y§’; +a —I—wa% —|—wy133 +a
Tpyp '

T‘P/ =
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Using that
wtw?=-1,

one obtains

—(z% +y3) + 2a 3a 3a(d + 3rp)
rpr = = —ld =7

3 —d. O
Tpyp Tpyp rp+a

Theorem 8. Using the compression function rp = fau2(P) = (xp + yp)
one can write as follows: if the kernel of the isogeny ¢ is point Q@ = (0 : —c : 1)
or Q= (—c:0:1), where ¢® = a, and r = fgu 2(P) then

d+3rp)(Prp + cr?
rp = fGH,Q(P/) = ( P)B( L P) — 26+7"P.
st a

PROOF. Let K = (0: —¢ : 1) or K = (—c : 0 : 1) be the generator of the
kernel of the 3-isogeny. One can compute ¢ as ¢ = —%. Then one can
compute the 3-isogeny with such kernel as follows.

At first, rp = zp + yp, so it means that

’yp +cxp +yprp + Pap + cyp +ypap

rpr =
TpYp

A(zp +yp) + (@%b +y2) + zpyp(zp + yp)
TpyYp
rp +c(ryh — 2xpyp) + Tpyprp
Tpyp

_ Arp + cr%D et rp = (d+3rp)(c*rp + cr%))

Tpyp rh+a

—2c+rp. O

4.4. Computation of general odd degree isogenies on twisted Hessian
curves. Using formulas presented in [4] for computations using a point compres-
sion function fgm 2(P) of isogenies of degree £ > 3 seems to be, however possible,
very hard and inefficient.

In this case, instead of using formulas presented in [4] alone, in this paper,
we proposed a method of adaptation Veli’s formulas on the short Weierstrass
curve, together with formulas presented in [4].

The main idea may be presented as follows. Because the compression function
faro(z,y) = x + y is additive, at first, the point P, for which one wants to
compute an isogeny ¢ : Eqy — E¢,;; and all points belonging to the kernel F' of
the isogeny, have to be transformed into the short Weierstrass curve Egyp . At the
same time, using formulas from [4], it is possible to compute the coefficients of
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the isogenous generalized Hessian curve E( ;. In the next step, one computes
isogenous short Weierstrass curve Ejy,, and the point P&y, using isogeny .
It should be noted that curves Ef,; and E§y, will be isomorphic. At the next
step, it is easy to find the isomorphism between Ef,;; and E%y, and therefore, it
is easy to transform the point P¢y, into the point Pl € Efyy.

In the Figure 1 we present all transformations necessary to obtain an isoge-
nous generalized Hessian curve E{,; using the compression function fgp 2, where
the degree ¢ of isogeny is odd and ¢ > 5.

Ecu i Err 02 Esw
3

(0 sy
g

B G — B G — B

— TR -
— G — G

Figure 1. Transformations necessary for obtaining ¢-isogenous gener-
alized Hessian curve using the compression function fogm 2.

Now we define particular isomorphisms and isogenies, which appear
in Figure 1.
(1) Isomorphism ¢1: Egyg — FErg, where Egg/K : 2® +y* +a = duay,
Err/K : t?2 +apst +dat = s® and:

3 a d d
A = —= — — =_.
AT a9r o AT 3
For Pgy = (xzp,yp) € FEgm with the compression function

fen2(Por) = xp + yp = rp we have:

—3a —3a
fTR,Q (¢1(PGH)) = fGH72(PGH) +d = rp + d’

where the compression function of degree 2 on a triangular curve is equal to
frr2(sp,tp) = sp for Prr = (sp,tp) € Err(K).
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(2) Isomorphism ¢o: Ergp — Esw, where Ergp/K : t2 + apst + dat = s°,
Esw/K : v? =u3+ Au+ B and

andp  dp —dA ah  di
A= - P A I Y
2 48’ 12 * 4 26
For Prg = (sp,t,) € Epgr with the compression function frgo(Prr) = sp
we have:
d d
fsw2 (¢2(Prgr)) = frr2(Prr) + 13 =Pt 15

where the compression function of degree 2 on a short Weierstrass curve is
equal to up = fswa(up,vp) and Psw = (up,vp) € Esw (K).

Isogeny € with a kernel F = {(0:1:0)}U> ", {Q; = (u;,v;)} from Esy —
Esyr, where Esyy - v?2 =u® + Au+ B and s 7 =u + Au+ B, and:

—
w
b

f(up,'l)p) = UP+Z(UP+Q 7’LLQ)7UP+Z(UP+Q 71;@) ,
QeF—{(0:1:0)} QeF—{(0:1:0)}

where
A= (A-5a), B=DB-170,
a:2ZQeF+(3 up + A), B:22Q6F+(2U123+UP(31)123+A))'
For the compression function fW,Q(H7 v) = u we have
faw 2 (E(up,vp)) = faw o (up + Z(UP+Q —uQ),vp + Z(UPJrQ —vq))
QeF—{(0:1:0)} QeF—{(0:1:0)}

=up+ ) (upiq —uQ)-
QeF—{(0:1:0)}

where
A=A—-5a, B=DB-178,

a=2) Hep+(3 ug), + A), 5:22Q6F+(5u%+3Au1)+2B).
(4) Isomoiphisril 0 Eqyr — Egp, Eqyp © 02 =W+ Au+ B and Egypy ¢ 02 =
% + A+ B. Let v € K* be a solution of the following system of equations:

VA=A,
~SB =B.
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For Pgyr = (Up,Up) € Egyr with the compression function fgy o(Pgyr) =
up we have:

fsiv 2 (0(Pswr)) = fai o (V2up,7*0p) = 7*1up,
where the compression function of digree 2 on FEgyp is equal to
fsw o(tp, 0p) = @ for Pgy = (4p,p) € Egy(K).
Isogeny ¢ with a kernel F = {(1 : =1 : 0)} U > {Qi = (@i, vi),
—Qi = (yi,z;)} from Egg to Egg, where Egg : 2° 4+ y® +a = day
and Egz/K : 73 4+ 7% 4+ a = dzy, and:

a’,

a =
d S i s it
d=((1=2n)d+ 6%, (d-a22) ) I, 7n.

and r; = x; + Y-

Isomorphism (i: Egs — Egg, where Eg/K @ 2847 +a@ = dzy, E7g/K :
2 4 GASE+ dal = 33 and:

4 a - _d
A = ——5 — — = —.
c7aom o T4 3
Isomorphism (o: Epp — Egp, where Epp/K - P 4 aast 4+ daT = .
Egp - 92 =43 + Ad + B and
- —4 -2 —6
~ a d d Y 7d R 62 d
AZGAA——A, BziAA_FA_A.
2 48 12 4 26

Isomorphism (;': Ezp — Fgg, where Ezx/K T+ anst + dat = 3°
Ezx/K : 73 +5°+a = dzy. For P = (5p,tp) € Egg with the compression

)

function f75 o(Prg) = 5p we have:

78&513 —3an

)

fam oG (Prg) = =27
P

where the compression function of degree 2 on a generalized Hessian curve is

equal to fa7 o(Tp,Yp) =Tp +Yp for Pagr = (Tp,Yp) € Eggr(K).

Isomorphism (5 ' Egy — Egp, where Egy @ 0% = 0° + A + B and

Erp/K : E +aasl + dal = 3 For Pgyy = (Zp,Jp) € Eqyp with the

compression function fgw ,(Pgy) = Zp = Tp we have:

N
frr2(r2(Pay)) =Tp — 5

where the compression function of degree 2 on a triangular curve is equal to

frr2(3p tp) =3p for Prr = (5p,tp) € Ezp(K).
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5. Compression function of degree 6 on generalized Hessian curves
using 3-torsion point

This section will present how to obtain a compression function f of degree 6
using natural symmetries on generalized Hessian curves and action on a 3-torsion
point.

Theorem 9 ([7]). If T3 € Equ(K) is a point of order 3 of the form
(1 : —w : 0) on a generalized Hessian curve Eqy, where w is a root of the
polynomial w? + w + 1, then the compression function foue : Fou(K) — K,
feme(z,y) = xy has degree 6, more exactly fau¢(P) = fame(Q), where Q =
+P + [k|T; and k = 0,2.

PRrROOF. At first, we will show that fope(P) = fome(Q) if and only if
P =+Q + [k]T5, where k = 0,2 and T5 = (1: —w : 0).

Let us denote fgue(P) = rp = xy. Let us assume that x,y # 0. Then
y = 2 and because 2*® 4 y* + a = dxy, then

3
z® + (Ti) ta=de’ L
x x
and
g(x) =25 + (a — drp)x® +rp® = 0.

The equation (5) has at most 6 different roots in K. It is easy to show
that if = is one of the roots of this equation, then the other roots are equal to

wz,w?x, T2 "B TP Tt means that
x wxr’ wex

0= fome(r,y) = fare(y,®) = fome(wr,w?y)

= fons(Ww?y,wa) = fame(w’z,wy) = fomes(wy, w’a)
and finally fou6(P) = fon,e(Q) if and only if Q = £P + [k]T3, for £ =0,2. O

Remark 3. Let us note that Joye in [8] obtained the compression function
g6(z,y) = 23 + ¢ for binary generalized Hessian curves. Indeed, the same com-
pression function works also on generalized Hessian curves over fields of the char-
acteristic greater than 3. Let us see, that gg(z,y) = 2% +y® = doy —a =
d- feme(r,y) — a.

On a generalized Hessian curve, the opposite point to point P = (z,y) equals
to —P = (y,z). Let w be a nontrivial cube root from 1, which means that
w?+w+1=0. Then T3 = (1 : —w : 0) is a point of order 3 and for every point
P € Egy holds P+ T3 = (wX : w™ Y : Z).
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5.1. Compression function fgu¢(P) = zy. Now we present formulas for dif-
ferential addition and doubling for the compression function fgm . Let us con-
sider points P = (zp,yp), Q@ = (2Q,yg), P — Q = (zp—q,yp—q) and P+ Q =
(xp+g,Yp+qg) on the generalized Hessian curve Egpy, and set rp = fam6(P),
rq = fone(Q), rp—q = foue(P — Q), and 7p1q@ = foue(P + Q).

5.1.1. Differential addition. It will be showed that for points P and @ the for-
mula for a differential addition is as follows:

TP2TQ2 —adrprg + aer +a%rp

5 (9)

TP+QTP-Q =

(rq —rp)
Using Sylvester formulas, one obtains
yprqQ — yéxp rhYqQ — x%yp
TpQ = ———————, Yp+Q =
QY — TprYp TQYQ — TPYpP
TPTYH — YPYQ —rprq + yPyd
rpQq=—""—", YypQ=—"——""
TPYP — TQYQ TPYP — TQYQ

After multiplication rpqrp—q = TrP1+QYP+QTr,YyrP—q One obtains
TP+QYP+QTPLYP-Q = 17, Where

L= (zpyr)’ud — (pyr)(2QuQ)*ypyo — b (zqye)* (xryr)ud
— (zryr)*(2QuQ)ypye + (Tryr)*(2Qye)* — = (2que)(zryr) vl
+ (2QuQ)*yp + 2(xpyr)* (zquo)® + 25 (zquo)® — (zpyr)rbyb(zque)’
+ (zpyp) (zquq)? — vpad(zpyr)(zque)? — (xryr) zhyp(10yq)
— abay (xpyp)*(zQy) + (xpyp) ),

M = ((zpyp) — (zoya))*.

Substituting rp = xpyp and rg = TQyg, one obtains

L=rp’(agy +yd) — rerQ’ (Ypyo +apyd + xhyp + apd)
=P rQ(Upyo + by + Tprg + T0yp) + 1P Q"
+1Q°yp + 2rp%rQ” + 2%ro® +rp'rg.

Since points P,Q € Egpy, that is

rh+yh=drp—a (10)
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and
:1:“22 —|—yg =drg —a,
and after the multiplication of these formulas one obtains
YpyY + Ty + xdyp + abaly = (drp — a)(drg — a).
It means that
L=rp’rg* +2rp’rQ® + rp*ro® + rp’(ady + vg) + ro® (2% + )
—rpro?(drp — a)(drg — a) — rp®rg(drp — a)(drg — a).
Using the following equalities
(@p +yp)? = 2p +yp + 20pyp = ap +yp + 2rp°,
(2 +y5)? = a& + & + 20} ud = 2, +yd + 2ro°,
one obtains that
2% + 4% = (drp — a)? — 2rp3,
xh +yd = (drg —a)® — 21, ()
Using equalities from (11) one obtains that
L =rp*ro* 4+ 2rpirg® + rptro?rp® ((drg — a)? — 2ro®)ro® ((drp — a)* — 2rp®)
—rpro?(drp —a)(drg — a) — rp?ro(drp — a)(drg — a)

It is worth noting that L may be factorized into form

L= (rg —rp)*(rp*rg? — adrprg + a*rg + arp).

Finally:
(rg —rp)*(rp*rg? — adrprg + arg + a’rp)
rp rp—_o =
+Q Q (TQ — TP)4
and rp2ra2 — ad 2 2
PTQ aarprqg +a‘rq +a‘rp
TP+QTP—Q = .

(rq —rp)®
Remark 4. For the compression function fgm ¢(P) = rp = xpyp represented
as (Rp : Sp) in RZ coordinates we have
RP+QRP—Q B R%Ré — adRpRQSpSQ + a2SpSQ(RpSQ + RQSP)
SPJrQSPfQ (RPSQ — RQSP)2

. (12)
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5.1.2. Doubling. Using doubling formulas on the generalized Hessian curve
vela=sh)  aelh-a)
Y A

it is possible to present w3 pyj2p = 72)p as a rational function depending on

L2lp =

rp,a,d.
After multiplication of z |3 py[zp one obtains

T2PY[21P = ep(a—2p)yplyp —a) _ zpyp(alyp +2p) —yprp —a?)
(@h —vp)? (eh — 2abyf +45)
Using equalities (10) and (11), one gets

rp(a(drp —a) —rp® — a?)

2= (drp —a)? — 4rp3
_ rpladrp —2a*> —rp3)  adrp® — 2d*rp —rp*
(drp —a)2 —4rp3  (drp —a)? — 4rp3

Remark 5. For the compression function fgm e¢(P) = rp = xpyp represented
as (Rp : Sp) in RZ coordinates we have
Rpip  adR%S5} —2a*RpSy — R},
S[Q]P o Sp (Sp(dRp — aSp)2 — 4R§’3)-

(13)

6. Applications of high-degree compression functions in isogeny-based
cryptography

A method for computing an odd general /-isogeny on a generalized Hessian
curve using the compression function feme(z,y) = xy will be described below.
Using identity
2 +y3 =dey —a,

where r = xy, and Equation (1), one may finally obtain that

o =at, d= ((1 —2n)d+6§: ( )) 1:[7' (14)

i=1

dr; —a
ri

Finally, using formula (3), one obtains that

fors(@(P) = [[zp+quriq =[] fonsP + Q)
Q#(1:—1:0)eF Q#(1:—1:0)eF

— HfGHvﬁ(P + Q) fene(P—Q),

i=1

which may be easily computed using formula (9).
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Remark 6. In the case of 2-isogenies, the computations have to be a little
different. Point of order 2 on a generalized Hessian curve is always of the form
Q = (zq,yqg). where xg = yg. Setting rg = 2qyg = ac2Q and using generalized
Hessian curve equation, one obtains that

2:162? +a= dmé
is equivalent to
2rgrg +a = drg.
From the above equation, one obtains that

dro —a
xinQ .

ZTQ

For @) being a point of order 2, the formula zp4Qyp+o +2p—Qypr—¢ is equal
to 2ep1QyYp+q = 2rpyg. Using Sylvester formula [8] for point addition and
evaluating xp4oyp+Q + Tp—QyYpP—@Q, one obtains that

ro(rore + rp? — zg(drp — a))
(rq —rp)? '

TP+Q =

Finally, for the 2-isogeny ¢o(P) with the kernel F = {(1: —=1:0),(zg : z¢ : 1)}
it holds that

2 - —
fare(d2(P)) =rpig = ro(rore —i—(:;_ rlf)Qg(dTP a))

_ QTPT?Q + (27’?D —d?®rp + ad)rg + adrp — a?
B 2(rq —rp)? '

Remark 7. Let us note that the compression function fome(x,y) = xy on
a Hessian curve (and, thus, on a generalized and twisted Hessian curve) cannot
be used for the computation of all possible 3-isogenies. Therefore, it is useless
to the isogeny-based cryptography if the computation of 3-isogenies is neces-
sary. It is worth noting that each 3-isogeny on Hessian curve [2] is generated by
() = {((=1:0:1)) or (Tz) = ((~w : 0 : 1)) or (T3) = ((—w? : 0 : 1)) or
<T4> = <(1 D—w 0)> At the same time, fGH,6(T1) = fGH,ﬁ(TQ) e fGH,G(TS) e
(0: 1). Therefore, it is impossible to distinguish a point that should be the kernel
of a given 3-isogeny. However, fau6(T4) = (—w : 0).
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6.1. Computational cost for operations using the compression function
feu6(z,y) = zy on a generalized Hessian curve.

6.1.1. Differential addition and doubling in projective coordinates. Let
a = (a1 : az) and d = (dy : d3). We can write a = (a1ds : asds) = (ap : M)
and d = (dias : asds) = (dp : M). By (12) for the compression function
fau6(P) = rp = xpyp in the projective representation (Rp : Sp) the formulae
for differential addition is

RP+QRP+Q M?R? RQ — aLdLRpRQSpSQ + G%SPSQ(RPSQ + RQSP)
Sp+oSpr—q M?2 (RPSQ RQSP)

If a =1 then for d = (d; : d2) one obtains

RpiqRpiq _ d2 (RpRY + SpSq(RpSq + RoSp)) — diRpRoSpSq
SpioSP_o ds (RpSq — RoSp)*

Using (13) we obtain the formula for doubling

Rigp apd R%S} — 243 RpS} — M?RY,
S[Q]P Sp (Sp(dLRp*CLLSP)zfllMQR?;)).

If a =1 then for d = (d; : d2) one obtains

Rip  didaR%S3 — 2d3RpS} — d3R}
Sgp Sp(Sp(diRp —d2Sp)? — 4d3R%)’

6.1.2. Isogeny computations. Let us consider the isogeny ¢ : Egg — Egy of
odd degree £ = 1+ 2s with the kernel FF = {(1 : =1 : 0)} U >, {Q:, —Qi}-
Let feme(Qi) = ri = (R; + S;) for i = 1,s. For the application of projective
representation of the compression function fgue(P) = (Rp : Sp) to the isogeny-
based cryptography, according to equation (14) one obtains

d = <(1—4sd+62(dR aS))HS

For I =5 (s = 2), we have got

dR1 — aS1 dRQ — aSg RlRQ
d=(-7d
(rao (Fg ™ TE))

—7dR1R2 +6 (RQ(de — (181) + R1(dR2 - CLSQ))
5152




Arithmetic on generalized Hessian curves. .. 679

Let a = (a1 : a2) and d = (d; : d2). Writing a = (a1ds : azds) = (ap : M) and
d = (dyas : asdy) = (dr, : M) one gets

(d’lzd’2>:<( 62(“” aLS)>H5

In case of £ =5 one gets

—TdR1R> + 6 (RQ(de — CLSl) + Ry (dRQ — aSg))
MSS55 '

(d : dy) =

If @ = 1 then for d = (d; : d2) one obtains

;) = <( “roy (MRS ))1_1?

For ¢ =5 we get

—7dR1R2 + 6 (Rg(d1R1 d251) + R4y (lez — szQ))
d25155

For P = (Xp :Yp : Zp) the image of P in isogeny ¢ is given by

$(P) = ( 11 Xpyo: II Ypio: 11 ZP+Q> :
)}

QeF—{(1:—1:0)} QeEF—{(1:—1:0)} QeF—{(1:—1:0

(dy : dy) =

For the compression function fgme(P) = rp = xpyp represented as (Rp : Sp),
one gets

fane(o(P)) = (H RpiqRp-q.: ] SP+Qi5PQi>
i=1 i=1
= (H (RQPR?Qi — adRpRQiSpSQi + GQSPSQi(RPSQi + RQiSp)) :
=1

[1(ReSq. - RQ,:SP)2>-

=1

Let a = (a1 : a2) and d = (d; : d2). We can write a = (a1ds : asds) = (ar, : M)
and d = (dyas : agds) = (dr, : M). Then one gets

S

Jeno6(P) = ([T (M*R} Ry, — ardiRpRa,SpSe,

i=1

+a3SpSq,(RpSq, + Rq,Sp)) : [ [ M* (RpSq, — Rq,Sp)? )

i=1
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If @ = 1 then for d = (d; : d3) one obtains

S

fono(@(P) = (T] (d2 (B3R, + SpSq.(RpSq, + Rq.Sp))

i=1

S
~diRpRo,SpSa,) : [[ dz (RpSq, — RQisP)Q).
i=1
Computational costs for differential addition and doubling operations
on a generalized Hessian curve with the compression function fgp,e are presented
in Table 1, where M, S and ¢ mean multiplication, squaring and multiplication
by a constant respectively.

Operation Computational cost
Differential addition (eq. (12)) 19M—+3S
Differential addition (eq. (6.1.1)) 11M+4S
Differential addition (eq. (6.1.1)) TM+38S
Doubling (eq. (13)) 11IM+4S+2c
Doubling (eq. (6.1.1)) 14M+4S+2c
Doubling (eq. (6.1.1)) 14M+4S+2c

Table 1. Computational costs for differential addition and doubling

Computational costs for 5-isogeny computations and evaluation on a generalized
Hessian curve with the compression function fg ¢ are presented in Table 2.

Operation Computational cost
5-isogenous Egg curve (eq. (6.1.2)) 8M+2¢
5-isogenous Epqg curve (eq. (6.1.2)) 9IM+2c
5-isogenous Fgqg curve (eq. (6.1.2)) 9M+2c

Point evaluation at 5-isogeny (eq. (6.1.2)) 11IM+3S
Point evaluation at 5-isogeny (eq. (6.1.2)) 13M+3S
Point evaluation at 5-isogeny (eq. (6.1.2)) 11M+3S

Table 2. Computational costs for 5-isogeny computations

7. Conclusion

This paper has presented how to obtain differential addition and doubling
formula for the compression function of degrees 2 and 6 on generalized Hessian
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curves. However, such formulas have been previously presented in [5] and [7].
This time these formulas have been obtained using elementary algebra methods,
not the Groébner basis mechanism. The most important part of this paper is pre-
senting formulas for computing 2,3, and f-isogenies on generalized Hessian curves
using the compression function of degree 2 and formulas for general computing
{-isogenies, for £ # 3. In the case of the compression function of degree 6, it is
worth noting that computing 3-isogenies, in this case, is impossible because it
is impossible to distinguish a compression of different points of order 3.

As we presented in the paper, it is clear that the compression function of
degree 6 is much more convenient for using the isogeny-based cryptography
because computation and evaluation of f-isogeny are, in this case, much more
efficient than similar computations for the compression function of degree 2. This
situation is because the compression function of degree 6 has a multiplicative
character, and the compression function of degree 2 has an additive character.
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