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Arithmetic on generalized Hessian curves using compression
function and its applications to the isogeny-based cryptography

By Michal/ Wroński and Tomasz Kijko

Abstract. In this paper, we present formulas for differential addition and doubling

using the compression function fGH,2(P ) = xP +yP of degree 2 on a generalized Hessian

curve EGH : x3 + y3 + a = dxy, where P = (xP , yP ). We use in this context elementary

algebra methods. Moreover, we also present formulas for 2, 3-isogeny, and general

ℓ-isogeny evaluation, using this function. It is worth noting that for the compression

function fGH,2, such formulas have not been presented before. On the other hand,

we also use elementary algebra methods for obtaining differential addition and doubling

formulas using the compression function fGH,6(P ) = xP yP of degree 6, and we present

formulas for 2 and general ℓ-isogeny evaluation using this function.

1. Introduction

Isogeny-based cryptography is one of the most promising fields in post-

quantum cryptography. In the SIKE algorithm (Supersingular Isogeny

Diffie–Hellman) specification, x-line arithmetic on the Montgomery curve is used.

It is worth noting that it is also possible to use other alternative models of elliptic

curves in this context, such as Edwards, twisted Edwards curves, Huff’s curves,

Hessian curves, generalized Hessian curves, and twisted Hessian curves. This pa-

per mainly focuses on applying x-line arithmetic to the Hessian curves family.

We consider the compression function on generalized Hessian curves, given by

fGH,2(P ) = xP + yP , where P = (xP , yP ). This compression function may be

easily obtained from the compression function fTH,2(P ) =
yP+1
xP

on the twisted
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Hessian curve ETH and isomorphism between EGH and ETH , which is simple co-

ordinates swapping. It is worth noting that formulas for differential addition on

a twisted Hessian curve using the compression function fTH,2 have been obtained

in [5] using Gröbner basis mechanism. This paper presents algebraic methods for

obtaining differential addition and doubling formulas on the curve EGH using the

compression function fGH,2. The application of function fGH,2 into the isogeny-

based cryptography has not been presented before. This paper will show how

to compute 2-isogeny and 3-isogeny, using formulas from [4]. Moreover, for the

computation of isogeny of degree ℓ ≥ 4, we use the Vélu formula using isomorphic

elliptic curves in the short Weierstrass form.

Even though the application of Vélu formula for the computation of 2-isogeny

on Hessian curves using point representation in full projective coordinates was

presented in [11], we apply Vélu formulas to obtain compression of isogeny eval-

uation formula for a point P given only by its compression fGH,2(P ). Moreover,

we use Vélu formulas only when ℓ ̸= 3.

Unfortunately, it seems that using the compression function fGH,2 in isogeny-

based cryptography is reasonable only in the context of SIDH and SIKE protocols,

where consecutive computations of 2 and 3-isogenies are required. In the case,

when it is necessary to compute isogenies of larger degree, like, e.g., in CRS [10]

and CSIDH [3], application of the compression function fGH,2 is challenging and

inefficient because the isogeny evaluation formula for twisted Hessian curves given

in [4] (and thus for generalized Hessian curves) has a multiplicative character.

However, the compression function fGH,2 has additive character.

Then next considered compression function on generalized Hessian curves

presented in this paper is degree 6 function fGH,6(P ) = xP yP . This compression

function has been considered in [7], where presented formulas for differential addi-

tion and doubling have been obtained using computational methods and Gröbner

basis mechanism. In this paper, for the compression function fGH,6, formulas for

a differential addition and doubling have been derived algebraically. Moreover,

we found the formulas for isogeny computations and point evaluations in the case

of 2 and general ℓ-isogeny. In the paper [7] such formulas for isogenies compu-

tation have not been considered. Because of computation of such isogenies has

multiplicative character, the function fGH,6 could be used in practice in the case

of ℓ-isogeny computations, for ℓ ≥ 5. In the case of ℓ = 3 our approach of using the

compression function fGH,6 fails, because for different 3-torsion points P function

fGH,6(P ) may give the same results, which is inconvenient in our applications.
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Some presented formulas in this paper are not valid if the characteristic of

the field is two and/or three. For simplicity we assume in the whole paper, that

the characteristic of the underlying field is larger than three.

2. Compression functions on elliptic curves

On elliptic curve E over a field K we call a compression function any rational

function f : E(K) → K such that for a point P ∈ E(K) holds f(P ) = f(−P ).
The degree of a compression function is the number of elements of the kernel of

the map f(P )− f(Q), where P,Q ∈ E(K). If the function f is of degree 2, then

f(P ) = f(Q) iff Q = −P . For any compression function f there is induced point

multiplication of values f(P ) given by [n]f(P ) = f([n]P ) for n ∈ Z.
There exist rational functions for differential additions A1(x, y), A2(x, y) ∈

K(x, y) such that

f(P +Q) + f(P −Q) = A1(f(P ), f(Q)),

f(P +Q)f(P −Q) = A2(f(P ), f(Q)).

Moreover, there also exists rational function for doubling D(x) ∈ K(x), such that

f([2]P ) = D(f(P )).

The properties above allow to compute [n]f(P ) using the Montgomery ladder

algorithm. We may adopt A(x, y, z) = A1(x, y))− z or A(x, y, z) = A2(x, y)/z in

this algorithm.

Algorithm 1: The Montgomery ladder

Input: f(P ) and the binary expansion of n = (nk, . . . , n0)2
Output: [n]f(P )

xP := f(P ); xQ := D(xP );

for i = k − 1, . . . , 0 do

if ni = 1 then
xP := A(xP , xQ, f(P ));

xQ := D(xQ);

else
xQ := A(xP , xQ, f(P ));

xP := D(xP );

end

end

return xP ;
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It is worth noting that it is also possible to obtain a compression function

of a degree greater than 2. It is possible if one considers translation τT : E →
E, τT (P ) = P + T for a particular chosen point T ∈ E(K) of order n. Now one

can search for the compression function f2n of degree 2n which is invariant under

involution and translation by T . It means that f2n(P ) = f2n (Q) if and only if

Q = ±P + [k]T , for k = 0, n− 1. More details may be found in [7].

3. Generalized and twisted Hessian curves

Definition 1. [8] A generalized Hessian curve EGH over a field K is given by

the equation

EGH/K : x3 + y3 + a = dxy,

for a, d ∈ K where a ̸= 0 and d3 ̸= 27a.

The sum of points P = (xP , yP ) and Q = (xQ, yQ) on EGH is given by

formulas:

(1) if P ̸= ±Q (point addition)

P +Q =

(
y2PxQ − y2QxP
xQyQ − xP yP

,
x2P yQ − x2QyP
xQyQ − xP yP

)
;

(2) if P = Q (point doubling)

[2]P =

(
yP (a− x3P )
x3P − y3P

,
xP (y

3
P − a)

x3P − y3P

)
.

The negation of the point P = (xP , yP ) is −P = (yP , xP ).

In projective coordinates, a generalized Hessian curve is given by the equation

EGH/K : X3 + Y 3 + aZ3 = dXY Z.

The neutral element of the addition law is the point at infinity (1 : −1 : 0). By

swapping X with Z we obtain the equation of twisted Hessian curve in projective

coordinates

ETH/K : aX3 + Y 3 + Z3 = dXY Z,

and affine coordinates

ETH/K : ax3 + y3 + 13 = dxy.

The addition law’s neutral element for twisted Hessian curves is the point (0,−1).
The negation of the point P = (xP , yP ) is −P = (xP

yP
, 1
yP

).
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The sum of points P = (xP , yP ) and Q = (xQ, yQ) on ETH is given by formulas:

a) if P ̸= ±Q (point addition)

P +Q =

(
xP − y2PxQyQ
axP yPx2Q − yQ

,
yP y

2
Q − ax2PxQ

axP yPx2Q − yQ

)
;

b) if P = Q (point doubling)

[2]P =

(
xP − y3PxP
ayPx3P − yP

,
y3P − ax3P
ayPx3P − yP

)
.

Theorem 1. Generalized Hessian curve EGH/K is birationally equivalent

to a twisted Hessian curve ETH/K. The isomorphism ψ : ETH → EGH for

P = (X : Y : Z) ∈ ETH is given by the equation:

ψ(P ) = ψ(X : Y : Z) = (Z : Y : X).

The inverse isomorphism ψ′ : EGH → ETH for P ′ = (X ′ : Y ′ : Z ′) ∈ EGH is

given by the equation:

ψ′(P ′) = ψ′(X ′ : Y ′ : Z ′) = (Z ′ : Y ′ : X ′).

In the next two theorems, we denote by ω the primitive cube root of unity

in the field K.

Theorem 2. There is given an elliptic curve ESW in short Weierstrass form

ESW /K : y2 = x3 + Ax + B and there is point T ∈ ESW (K) of order 3. Then

one can find isomorphic ESW /K to the elliptic curve in triangular form ETR/K :

y2 + dxy + ay = x3, where

(1) d is any root of polynomial W (s) = −1
6912s

8 − 1
24As

4 −Bs2 +A2;

(2) a = (A+ d4

48 )
2
d ;

(3) x = x− d2

12 ;

(4) y = y − dx+a
2 .

Proof. The theorem is the result of allowed coordinates change for elliptic

curves. □

Corollary 1. There exists an isomorphism ψ1 : ESW → ETR, which trans-

forms the point PSW ∈ ESW (K) into the point PTR ∈ ETR(K), where

PTR = ψ1(PSW ) = (x, y) = (x− d2

12 , y −
dx+a

2 ).
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Theorem 3 (This is Theorem 5.3 in [1]). There is given an elliptic curve

in triangular form ETR/Fq : VW (V + dU + aW ) = U3. There exists a twisted

Hessian curve ETH/Fq : (d3 − 27a)X3 + Y 3 + Z3 = 3dXY Z, which is isomor-

phic to the curve ETR by isomorphism ψ2 : ETR → ETH , where ψ2(U, V,W ) =

(U, ω(V + dU + aW ) − ω2V − aW,ω2 (V + dU + aW ) − ωV − aW ) = (X,Y, Z).

The inversion of ψ2 is the isomorphism ψ−1
2 : ETH → E△, where ψ−1

2 (X,Y, Z) =(
X,−dX+ωY+ω2Z

3 ,−dX+Y+Z
3a

)
.

Proof. The proof may be found in [1], Theorem 5.3. □

Theorem 4. There is given an elliptic curve in triangular form

ETR,a,d/Fq : VW (V + dU + aW ) = U3. There exists a generalized Hessian

curve EGH/Fq : X3 + Y 3 + (d3 − 27a)Z3 = 3dXY Z, which is isomorphic to

the curve ETR by isomorphism ψ2 : ETR → EGH , where ψ2(U : V : W ) =

(ω2 (V + dU + aW ) − ωV − aW : ω(V + dU + aW ) − ω2V − aW : U) = (X :

Y : Z). The inversion of ψ2 is the isomorphism ψ−1
2 : ETH → ETR, where

ψ−1
2 (X : Y : Z) =

(
Z : −dZ+ωY+ω2X

3 : −dZ+Y+X
3a

)
.

Proof. The same as for Theorem 3 with replacing variables X and Z. □

The following remark is the consequence of Theorems 2 and 3.

Remark 1. For elliptic curves in short Weierstrass form ESW where

3|#ESW (Fq) and the point PSW ∈ ESW given inXZ coordinates PSW = (X : Z),

it is possible to find the point PTH = ψ2(ψ1(PSW )) (given in XR coordinates (X :

R), where R = Y +Z), where PTH = (12X−Zd2 : −d(X− d2

12 )−3aZ) = (X : R).

Inverse transformation from PTH (given by XR coordinates) to PSW in XZ co-

ordinates is given by PSW = ψ−1
1 (ψ−1

2 (PTH) = ψ−1
2 (aXTH : −(dXTH +RTH)) =

(12aXTH − d2(dXTH +RTH) : 12(dXTH +RTH)).

Similarly, the remart below, is the consequence of Theorems 2 and 4.

Remark 2. For elliptic curves in short Weierstrass form ESW where

3|#ESW (Fq) and the point PSW ∈ ESW given inXZ coordinates PSW = (X : Z),

it is possible to find the point PGH = ψ2(ψ1(PSW )) given in RZ coordinates

(R = X + Y ), where PGH = (−d(Z − d2

12 )− 3aX : 12Z −Xd2) = (R : Z). Inverse

transformation from PGH (given by RZ coordinates) to PSW (given by XZ coor-

dinates) is given by PSW = ψ−1
1 (ψ−1

2 (PGH) = ψ−1
2 (aZGH : −(dZGH + RGH)) =

(12aZGH − d2(dZGH +RGH) : 12(dZGH +RGH)).

The application of compression functions in isogeny-based cryptography is

presented in [9], in the context of compression functions of degree 8 on Edwards
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curves. Similarly, the application of compression functions of degree 2 on Huff’s

curves in the isogeny-based cryptography is presented in [6]. We will focus on

applying the compression function fGH,6(x, y) = xy on the generalized Hes-

sian curve. The multiplicative character of formula (3) favors the compression

function fGH,6 for applications in isogeny-based cryptography. Let us note that

fGH,2(x, y) = x+ y is strictly additive and, therefore, applying this compression

function to formula (3) seems to be much more challenging and inefficient.

We transformed the formulas for general ℓ-isogeny on a twisted Hessian curve

from [4] into their equivalent formulas on generalized Hessian curves.

Let ETH : ax3 + y3 + 1 = dxy and E′
TH : a′x3 + y3 + 1 = d′xy, and

let ℓ be the degree of the isogeny ϕ : ETH → E′
TH , n = ℓ − 1, and let

F = {(0,−1)} ∪
∑n

i=1 {(ui, vi)} be the kernel of the isogeny ϕ. Then, us-

ing the general formula for coefficients of an ℓ-isogenous twisted Hessian curve

ETH , the coefficients of the isogenous generalized Hessian curve E′
TH are equal

to a′ = aℓ, d′ =
(1−2n)d+6

∑n
i=1

1
uivi∏n

i=1 ui
.

Using birationally equivalence between generalized Hessian and twisted Hes-

sian curve, coefficients of an ℓ-isogenous generalized Hessian curve may be com-

puted as a′ = aℓ, d′ =
(
(1− 2n)d+ 6

∑n
i=1

u2
i

vi

)∏n
i=1 ui, where the kernel of the

isogeny is equal to F = {(1 : −1 : 0)} ∪
∑n

i=1 {(ui, vi)}.
Using the fact, that if point Q = (ui, vi) belongs to the kernel F , then

−Q = (vi, ui) also belongs to this kernel, and for odd ℓ = 2s+1 it may be written

that

d′ =

(
(1− 2n)d+ 6

s∑
i=1

(
u2i
vi

+
v2i
ui

)) s∏
i=1

uivi

=

(
(1− 2n)d+ 6

s∑
i=1

(
u3i + v3i
uivi

)) s∏
i=1

uivi. (1)

Similarly, the equation for evaluation of degree ℓ isogeny, for ℓ ̸= 3, [4, Theorem

5] on a twisted Hessian curve may be easily transformed into the same form on a

generalized Hessian curve:

ϕ(P ) =
(∏

Q̸=(1:−1:0)∈F xP+Q,
∏

Q̸=(1:−1:0)∈F yP+Q

)
,

where ϕ : EGH → E′
GH .
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4. Compression function of degree 2 on generalized Hessian curves

Let us define the compression function on a generalized Hessian curve of

degree 2 given by fGH,2(P ) = fGH,2(xP , yP ) = xP + yP . At first, it will be

proved that fGH,2(P ) has indeed degree 2.

Proof. For P = (xP , yP ) ∈ EGH(K) set rP = fGH,2(P ) = xP + yP . Then

yP = rP − xP and then EGH equation

x3P + y3P + a = dxP yP

can be transformed into:

x3P + (rP − xP )3 + a = dxP (rP − xP ),

which may be simplified to the form

3rPx
2
P + dx2P − 3r2PxP − drPxP + r3P + a = 0.

If this equation is satisfied by xP , then, because the degree of the equation is

equal to 2, the second root is rP − xP , which means that the only points, for

which holds rP = xP + yP and 3rPx
2
P + dx2P − 3r2PxP − drPxP + r3P + a = 0 are

points P = (xP , yP ) and −P = (yP , xP ). □

4.1. Obtaining formulas for point doubling and points addition on gen-

eralized Hessian curves using the compression function fGH,2(x, y) of

degree d = 2. Let r = fGH,2(x, y) = x + y be the compression function on

a generalized Hessian curve. Using Sylvester formulas for points addition on a

generalized Hessian curve

xP+Q =
y2PxQ − y2QxP
xQyQ − xP yP

, yP+Q =
x2P yQ − x2QyP
xQyQ − xP yP

,

it is possible to write the sum of fGH,2(P+Q)+fGH,2(P−Q), where P = (xP , yP )

and Q = (xQ, yQ) in the following form:

fGH,2(P +Q) + fGH,2(P −Q) = L
M

=
−yP yQ

2−xP yQ
2+yP

2yQ+xP
2yQ+xQyP

2−xQ
2yP−xP xQ

2+xP
2xQ

xQyQ−xP yP
.

Using that rP = xP + yP and rQ = xQ + yQ, the nominator may be easily

transformed into the form:

−rP (yQ2 + xQ
2) + rQ(yP

2 + xP
2).
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Using a generalized Hessian curve equation and putting r = x + y and t = xy,

one can obtain that if

x3 + y3 + a = dxy,

then

(x+ y)((x+ y)2 − 3xy) + a = dxy. (2)

Putting t = xy the Equation (2) is equivalent to

r3 − 3rt+ a = dt

and finally:

t =
r3 + a

d+ 3r
. (3)

Putting tP = xP yP and tQ = xQyQ, one can write

yP
2 + xP

2 = (xP + yP )
2 − 2xP yP = r2P −

2(r3P + a)

d+ 3rP
(4)

and

yQ
2 + xQ

2 = (xQ + yQ)
2 − 2xQyQ = r2Q −

2(r3Q + a)

d+ 3rQ
. (5)

Using equations (4) and (5), one can obtain L as

L = −
rP (r

2
Q − 2(r3Q + a))

d+ 3rQ
+
rQ(r

2
P − 2(r3P + a))

d+ 3rP
.

M may be transformed into the following form:

M =
(r3Q + a)

(d+ 3rQ)
− (r3P + a)

(d+ 3rP )
.

Finally, L
M can be presented as:

L

M
= −

((3r2P + drP )r
2
Q + (dr2P + d2rP + 6a)rQ + 6arP + 2ad)

((3rP + d)r2Q + (3r2P + drP )rQ + dr2P − 3a)
.

To obtain doubling formulas, it is convenient to use formulas for complete

arithmetic [8]:

x[2]P =
yP (a− x3P )
x3P − y3P

, y[2]P =
xP (y

3
P − a)

x3P − y3P
.
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Then

r[2]P = x[2]P + y[2]P = − (xP y
2
P + x2P yP + a)

(y2P + xP yP + x2P )
.

The nominator −(xP y2P + x2P yP + a) may be transformed into the form

− (xP yP (xP + yP ) + a) which is equivalent to −( rP (r3P+a)
d+3rP

+a). The denominator

(y2P + xP yP + x2P ) may be written as (xP + yP )
2 − xP yP , which is equivalent to

r2P −
r3P+a
d+3rP

. Finally:

r[2]P =
−(r4P + 4arP + ad)

(2r3P + dr2P − a)
.

4.2. Computing 2-isogenies on a generalized Hessian curve using com-

pression function of degree 2. This subsection will present how to compute

2-isogeny on a generalized Hessian curve using a point compression.

First of all, the compression of point P = (xP , yP ), where P ∈ EGH(K) in

affine coordinates may be represented as f(P ) = xP + yP , so for point

P = (XP : YP : ZP ) in projective coordinates, its compression may be presented

as (XP + YP : ZP ).

Several lemmas need to be proved before formulas for 2-isogeny computation

on a generalized Hessian curve will be presented.

Lemma 1. On a generalized Hessian curve, every point of order 2 may be

presented as (α, α) in affine coordinates, where α is any root of the polynomial

w(s) = 2s3 − ds2 + a.

Proof. For every point tQ = (α, β) of order 2 equality P = −P holds.

Because for every point P = (xP , yP ) ∈ ETH(K) holds that −P = (yP , xP ) in

affine coordinates, then for point tQ must hold α = β. Then must also hold

2α3 + a = dα2, which is equivalent to 2α3 − dα2 + a = 0, so α must be any root

of the polynomial 2s3 − ds2 + a in the field K. □

Lemma 2. Coefficients of the generalized Hessian curve E′
GH/K, which is

2-isogenous to the curve EGH/K are equal to a′ = a2, d′ = −dα+6
α2 , where the

kernel of the isogeny ϕ is the point TQ = (α, α) of order 2.

Proof. Let ℓ be the degree of isogeny ϕ, n = ℓ − 1, and let

F = {(1 : −1 : 0)} ∪
∑n

i=1 {(ui, vi)} be the kernel of the isogeny ϕ. Then

using the general formula for coefficients of the ℓ-isogenous generalized Hessian

curve EGH , where the kernel of ℓ-isogeny is F = {(1 : −1 : 0)} ∪
∑n

i=1 {(ui, vi)},
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the curve coefficients are equal to

a′ = aℓ, (6)

d′ =

(
(1− 2n)d+ 6

n∑
i=1

u2i
vi

)
n∏

i=1

ui. (7)

Because in the case of 2-isogeny F = {(1 : −1 : 0), (α, α)}, then a′ = a2,

d′ = −dα+ 6α2. □

Lemma 3. If TQ is the point of order 2, then

f(P + TQ) = A(f(P ), f(TQ))/2,

where A(f(P ), f(TQ)) is a rational function.

Proof. The differential addition f(P + TQ) + f(P − TQ) may be presented

by some rational function A(f(P ), f(TQ)). If a point TQ is of order 2, then

f(P + TQ) = f(P − TQ) and therefore f(P + TQ) = A(f(P ), f(TQ))/2. □

Theorem 5. Point evaluation ϕ(P ) by the isogeny ϕ : EGH → E′
GH with

the kernel F = {(1 : −1 : 0), TQ}, using formulas from Section 3, is equal to

ϕ(P ) =
(
xPxP+TQ

, yP yP+TQ

)
,

where TQ = (α, α), P = (xP , yP ) and P + TQ = (xP+TQ
, yP+TQ

).

Lemma 4. Let P = (xP , yP ) and Q = (xQ, yQ), where P,Q ∈ EGH(K).

If m = xPxQ + yP yQ and n = yPxQ + yQxP , then rP rQ = m + n, where

rP = f(P ) = xP + yP and rQ = f(Q) = xQ + yQ.

Proof. Because rP = xP + yP and rQ = xQ + yQ, then rP rQ = yP yQ +

xPxQ + yPxQ + yQxP = m+ n. □

Lemma 5. The number m = xPxQ + yP yQ is the root of polynomial

G(s) = 3rP rQs
2 − 3r2P r

2
Qs− 3tRrP rQ − (dtP − a) (dtQ − a), where tR = tP tQ.

Proof. Let x3P + y3P + a = dxP yP and x3Q + y3Q + a = dxQyQ. Then

x3P +y3P = dxP yP −a and x3Q+y3Q = dxQyQ−a. If one multiplies these formulas,

then (
x3P + y3P

) (
x3Q + y3Q

)
= x3Px

3
Q + y3P y

3
Q + x3Qy

3
P + x3P y

3
Q

= (dxP yP − a) (dxQyQ − a) .
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Now one can substitute tP = xP yP , which may be computed using formula (3)

as B(rP ) and tQ = xQyQ as B(rQ). Then tR = tP tQ = xPxQyP yQ.

In the next step

x3Px
3
Q + y3P y

3
Q + x3Qy

3
P + x3P y

3
Q

= (yP yQ + xPxQ)
(
(yP yQ + xPxQ)

2 − 3yP yQxPxQ
)

+ (yPxQ + yQxP )
(
(yPxQ + yQxP )

2 − 3yP yQxPxQ
)

= m(m2 − 3tR) + n(n2 − 3tR) = (dxP yP − a) (dxQyQ − a) .

Because n = rP rQ −m, then

m(m2 − 3tR) + (rP rQ −m)((rP rQ −m)2 − 3tR)

= 3rP rQm
2 − 3r2P r

2
Qm− 3tRrP rQ + r3P r

3
Q = (dxP yP − a) (dxQyQ − a) .

It means that m is a root of the polynomial

G(s) = 3rP rQs
2 − 3r2P r

2
Qs− 3tRrP rQ − (dtP − a) (dtQ − a) . □

Lemma 6. m = xPxQ + yP yQ is the root of the polynomial H(s) = s3 −
3tRs− d′tR + a′.

Proof. According to Lemma 2, if P = (xP , yP ), Q is 2-torsion point equal

to Q = (xQ, yQ), then point P3 = (xR, yR), where rR = xR+ yR and xR = xPxQ,

yR = yP yQ, lies on the curve E′
GH : x3+y3+a′ = d′xy, where a′ and d′ are given

by Equations (6) and (7) respectively. Moreover, it holds that rR = xR + yR =

xPxQ + yP yQ = m. Making some transformations, one can obtain

x3R + y3R = (xR + yR)
(
(xR + yR)

2 − 3xRyR
)

= m(m2 − 3tR) = d′xRyR − a′ = d′tR − a′.

So finally

m3 − 3tRm− d′tR + a′ = 0

and m is a root of the polynomial H(s) = s3 − 3tRs− d′tR + a′. □
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The previous lemmas lead to the following theorem.

Theorem 6. Ifm = yP yQ+xPxQ, thenm is the only root of the polynomial

J(s) = 3rP rQH(s)−G(s)(s+ rP rQ) and by definition rR = m.

Proof. Let us make the following transformations

J(s) = G(s)− sG(s) + 3rP rQH(s)

= (1− s)
(
3rP rQs

2 − 3r2P r
2
Qs− 3tRrP rQ − (dtP − a) (dtQ − a)

)
+ 3rP rQ

(
s3 − 3tRs− d′tR + a′

)
= 3rP rQs

2 − 3r2P r
2
Qs− 3tRrP rQ − (dtP − a) (dtQ − a)

− 3rP rQs
3 + 3r2P r

2
Qs

2 + 3tRrP rQs+ s (dtP − a) (dtQ − a)

+ 3rP rQs
3 − 9rP rQtRs− 3rP rQd

′tR + 3rP rQa
′

= (a2 − adtP − adtQ + d2tP tQ + 2r3P r
3
Q − 6rP rQtR)s

+ a2rP rQ − adrP rQtP − adrP rQtQ + d2rP rQtP tQ

+ 3aprP rQ − 3dprP rQtR − r4P r4Q + 3r2P r
2
QtR.

Finally

m = rR = L3

M3
,

where

L3 = −a2rP rQ + adrP rQtP + adrP rQtQ − d2rP rQtP tQ − 3a′rP rQ

+ 3d′rP rQt3 + r4P r
4
Q − 3r2P r

2
QtR

and

M3 = a2 − adtP − adtQ + d2tP tQ + 2r3P r
3
Q − 6rP rQtR. □

4.3. 3-isogeny computation. Using birationally equivalence between twisted

Hessian and generalized Hessian curves and formulas from [4], formulas for 3-

isogeny ϕ : EGH → E′
GH computation on generalized Hessian curves, where

EGH : x3 + y3 + a = dxy and E′
GH : x3 + y3 + a′ = d′xy, are as follows:

(1) if the kernel of the isogeny is F = {(1 : −1 : 0), (1 : −ω : 0), (1 : −ω2 : 0)},
then

P ′ =

(
ωx3 + ω2y3 + a

xP yP
,
ω2x3 + ωy3 + a

xy

)
and P ′ ∈ GHa′,d′ , where a′ = d3 − 27a and d′ = 3d;
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(2) if the kernel of the isogeny is F = {(1 : −1 : 0), (0 : −c : 1), (−c : 0 : 1)},
where c3 = a, then

P ′ =
(
c2y + cx2 + y2x : c2x+ cy2 + yx2 : xP yP

)
(8)

and P ′ ∈ GHa′,d′ , where a′ = d2c+ 3dc2 + 9a and d′ = d+ 6c;

(3) if the kernel of the isogeny is F = {(1 : −1 : 0), (0 : −ωc : 1), (−ωc : 0 : 1)},
where (ωc)3 = a, then

P ′ =
(
c2ω2y + cωx2 + y2x : c2ω2x+ cωy2 + yx2 : xy

)
and P ′ ∈ GHa′,d′ , where a′ = d2cω + 3dc2ω2 + 9a and d′ = d+ 6cω;

(4) if the kernel of the isogeny is F = {(1 : −1 : 0), (0 : −ω2c : 1), (−ω2c : 0 : 1)},
where (ω2c)3 = a, then

P ′ =
(
c2ωy + cω2x2 + y2x : c2ωx+ cω2y2 + yx2 : xy

)
and P ′ ∈ GHa′,d′ , where a′ = d2cω + 3dc2ω2 + 9a and d′ = d+ 6cω.

Proof. Points (1) and (2) follow simply from [4]. Moreover, let us note

that if a = c3, then a = c32 = (ωc)3 and a = c33 = (ω2c)3. It means that if one

substitute c in Equation (8) by c2, c3 respectively, then one obtains formulas from

points (2), (3) and (4). □

Theorem 7. Using the compression function rP = fGH,2(P ) = (xP + yP )

one can write as follows.

If the kernel of the isogeny ϕ : EGH → E′
GH is point (1 : −ω : 0) or (1 : −ω2 :

0), and P ′ = ϕ(P ), rP = fGH,2(P ) then

rP ′ = fGH,2(P
′) =

3a(d+ 3rP )

r3P + a
− d.

Proof. Let K = (1 : −ω : 0) or K = (1 : −ω2 : 0) be the point generating

the kernel of the 3-isogeny. The only rational points having Z-coordinate equal

to 0 are (1 : −1 : 0), which is the neutral element, and (1 : −ω : 0), (1 : −ω2 : 0)

which are points of order 3. If one checks that Z ̸= 0, one can compute the

3-isogeny with such kernel.

At first, rP = xP + yP , so it means that

rP ′ =
ωx3P + ω2y3P + a+ ω2x3P + ωy3P + a

xP yP
.
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Using that

ω + ω2 = −1,

one obtains

rP ′ =
−(x3P + y3P ) + 2a

xP yP
=

3a

xP yP
− d =

3a(d+ 3rP )

r3P + a
− d. □

Theorem 8. Using the compression function rP = fGH,2(P ) = (xP + yP )

one can write as follows: if the kernel of the isogeny ϕ is point Q = (0 : −c : 1)
or Q = (−c : 0 : 1), where c3 = a, and r = fGH,2(P ) then

rP ′ = fGH,2(P
′) =

(d+ 3rP )(c
2rP + cr2P )

r3P + a
− 2c+ rP .

Proof. Let K = (0 : −c : 1) or K = (−c : 0 : 1) be the generator of the

kernel of the 3-isogeny. One can compute c as c = −KX+KY

Kz
. Then one can

compute the 3-isogeny with such kernel as follows.

At first, rP = xP + yP , so it means that

rP ′ =
c2yP + cx2P + y2PxP + c2xP + cy2P + yPx

2
P

xP yP

=
c2(xP + yP ) + c(x2P + y2P ) + xP yP (xP + yP )

xP yP

=
c2rP + c(r2P − 2xP yP ) + xP yP rP

xP yP

=
c2rP + cr2P
xP yP

− 2c+ rP =
(d+ 3rP )(c

2rP + cr2P )

r3P + a
− 2c+ rP . □

4.4. Computation of general odd degree isogenies on twisted Hessian

curves. Using formulas presented in [4] for computations using a point compres-

sion function fGH,2(P ) of isogenies of degree ℓ > 3 seems to be, however possible,

very hard and inefficient.

In this case, instead of using formulas presented in [4] alone, in this paper,

we proposed a method of adaptation Velú’s formulas on the short Weierstrass

curve, together with formulas presented in [4].

The main idea may be presented as follows. Because the compression function

fGH,2(x, y) = x + y is additive, at first, the point P , for which one wants to

compute an isogeny ϕ : EGH → E′
GH and all points belonging to the kernel F of

the isogeny, have to be transformed into the short Weierstrass curve ESW . At the

same time, using formulas from [4], it is possible to compute the coefficients of
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the isogenous generalized Hessian curve E′
GH . In the next step, one computes

isogenous short Weierstrass curve E′
SW , and the point P ′

SW , using isogeny ψ.

It should be noted that curves E′
GH and E′

SW will be isomorphic. At the next

step, it is easy to find the isomorphism between E′
GH and E′

SW and therefore, it

is easy to transform the point P ′
SW into the point P ′

GH ∈ E′
GH .

In the Figure 1 we present all transformations necessary to obtain an isoge-

nous generalized Hessian curve E′
GH using the compression function fGH,2, where

the degree ℓ of isogeny is odd and ℓ ≥ 5.

EGH ETR ESW

ESW

E
ŜWETREGH

ϕ1 ϕ2

ξ

σ

← ζ−1
2← ζ−1

1

ψ

ζ1 → ζ1 →

Figure 1. Transformations necessary for obtaining ℓ-isogenous gener-

alized Hessian curve using the compression function fGH,2.

Now we define particular isomorphisms and isogenies, which appear

in Figure 1.

(1) Isomorphism ϕ1: EGH → ETR, where EGH/K : x3 + y3 + a = dxy,

ETR/K : t2 + a△st+ d△t = s3 and:

a△ =
d3

272
− a

27
, d△ =

d

3
.

For PGH = (xP , yP ) ∈ EGH with the compression function

fGH,2(PGH) = xp + yp = rP we have:

fTR,2 (ϕ1(PGH)) =
−3a

fGH,2(PGH) + d
=
−3a
rP + d

,

where the compression function of degree 2 on a triangular curve is equal to

fTR,2(sP , tP ) = sP for PTR = (sP , tP ) ∈ ETR(K).
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(2) Isomorphism ϕ2: ETR → ESW , where ETR/K : t2 + a△st + d△t = s3,

ESW /K : v2 = u3 +Au+B and

A =
a△d△

2
−
d4△
48
, B =

−d2△
12

A+
a2△
4
−
d6△
26
.

For PTR = (sP , tp) ∈ ETR with the compression function fTR,2(PTR) = sP
we have:

fSW,2 (ϕ2(PTR)) = fTR,2(PTR) +
d2△
12

= sP +
d2△
12
,

where the compression function of degree 2 on a short Weierstrass curve is

equal to uP = fSW,2(uP , vP ) and PSW = (uP , vP ) ∈ ESW (K).

(3) Isogeny ξ with a kernel F = {(0 : 1 : 0)}∪
∑n

i=1 {Qi = (ui, vi)} from ESW →
ESW , where ESW : v2 = u3 +Au+B and ESW : v2 = u3 +Au+B, and:

ξ(up, vp) =

up +∑
Q∈F−{(0:1:0)}

(uP+Q − uQ), vp +
∑

Q∈F−{(0:1:0)}

(vP+Q − vQ)

 ,

where

A = (A− 5α), B = B − 7β,

α = 2
∑

Q∈F+(3 u2P +A), β = 2
∑

Q∈F+(2v2P + vp(3v
2
P +A)).

For the compression function fSW,2(u, v) = u we have

fSW,2(ξ(uP , vP )) = fSW,2

(
uP +

∑
Q∈F−{(0:1:0)}

(uP+Q − uQ), vp +
∑

Q∈F−{(0:1:0)}

(vP+Q − vQ)
)

= up +
∑

Q∈F−{(0:1:0)}

(uP+Q − uQ).

where

A = A− 5α, B = B − 7β,

α = 2
∑

Q∈F+(3 u2Q +A), β = 2
∑

Q∈F+(5u3Q + 3AuP + 2B).

(4) Isomorphism σ: ESW → E
ŜW

, ESW : v2 = u3 +Au+B and E
ŜW

: v̂2 =

û3 + Âû+ B̂. Let γ ∈ K∗ be a solution of the following system of equations:{
γ4Â = A,

γ6B̂ = B.



672 M. Wroński and T. Kijko

For PSW = (uP , vP ) ∈ ESW with the compression function fSW,2(PSW ) =

uP we have:

f
ŜW,2

(σ(PSW )) = f
ŜW,2

(γ2uP , γ
3vP ) = γ2uP ,

where the compression function of degree 2 on E
ŜW

is equal to

f
ŜW,2

(ûP , v̂P ) = û for P
ŜW

= (ûP , v̂P ) ∈ EŜW
(K).

(5) Isogeny ψ with a kernel F = {(1 : −1 : 0)} ∪
∑s

i=1{Qi = (xi, yi),

−Qi = (yi, xi)} from EGH to EGH , where EGH : x3 + y3 + a = dxy

and EGH/K : x3 + y3 + a = dxy, and:

a = aℓ,

d =
(
(1− 2n)d+ 6

∑s
i=1

(
d− ad+3ri

r3i+a

))∏s
i=1

r3i+a
d+3ri

.

and ri = xi + yi.

(6) Isomorphism ζ1: EGH → ETR, where EGH/K : x3+y3+a = dxy, ETR/K :

t
2
+ a△st+ d△t = s3 and:

a△ =
d
3

272
− a

27
, d△ =

d

3
.

(7) Isomorphism ζ2: ETR → E
ŜW

, where ETR/K : t
2
+ a△st + d△t = s3,

E
ŜW

: v̂2 = û3 + Âû+ B̂ and

Â =
a△d△

2
−
d
4

△

48
, B̂ =

−d2△
12

Â+
a2△
4
−
d
6

△

26
.

(8) Isomorphism ζ−1
1 : ETR → EGH , where ETR/K : t

2
+ a△st + d△t = s3,

EGH/K : x3+y3+a = dxy. For PTR = (sP , tP ) ∈ ETR with the compression

function fTR,2(PTR) = sP we have:

fGH,2(ζ
−1
1 (PTR)) =

−d△sP − 3a△
sP

,

where the compression function of degree 2 on a generalized Hessian curve is

equal to fGH,2(xP , yP ) = xP + yP for PGH = (xP , yP ) ∈ EGH(K).

(9) Isomorphism ζ−1
2 : E

ŜW
→ ETR, where EŜW

: v̂2 = û3 + Âû + B̂ and

ETR/K : t
2
+ a△st + d△t = s3 For P

ŜW
= (x̂P , ŷP ) ∈ E

ŜW
with the

compression function f
ŜW,2

(P
ŜW

) = x̂P = r̂P we have:

fTR,2(κ2(PŜW
)) = r̂P −

d
2

12
,

where the compression function of degree 2 on a triangular curve is equal to

fTR,2(sP , tP ) = sP for PTR = (sP , tP ) ∈ ETR(K).
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5. Compression function of degree 6 on generalized Hessian curves

using 3-torsion point

This section will present how to obtain a compression function f of degree 6

using natural symmetries on generalized Hessian curves and action on a 3-torsion

point.

Theorem 9 ([7]). If T3 ∈ EGH(K) is a point of order 3 of the form

(1 : −ω : 0) on a generalized Hessian curve EGH , where ω is a root of the

polynomial ω2 + ω + 1, then the compression function fGH,6 : EGH(K) → K,

fGH,6(x, y) = xy has degree 6, more exactly fGH,6(P ) = fGH,6(Q), where Q =

±P + [k]T3 and k = 0, 2.

Proof. At first, we will show that fGH,6(P ) = fGH,6(Q) if and only if

P = ±Q+ [k]T3, where k = 0, 2 and T3 = (1 : −ω : 0).

Let us denote fGH,6(P ) = rP = xy. Let us assume that x, y ̸= 0. Then

y = rP
x and because x3 + y3 + a = dxy, then

x3 +
(rP
x

)3
+ a = dx

rP
x

and

g(x) = x6 + (a− drP )x3 + rP
3 = 0.

The equation (5) has at most 6 different roots in K. It is easy to show

that if x is one of the roots of this equation, then the other roots are equal to

ωx, ω2x, rPx ,
rP
ωx ,

rP
ω2x . It means that

rp = fGH,6(x, y) = fGH,6(y, x) = fGH,6(ωx, ω
2y)

= fGH,6(ω
2y, ωx) = fGH,6(ω

2x, ωy) = fGH,6(ωy, ω
2x)

and finally fGH,6(P ) = fGH,6(Q) if and only if Q = ±P + [k]T3, for k = 0, 2. □

Remark 3. Let us note that Joye in [8] obtained the compression function

g6(x, y) = x3 + y3 for binary generalized Hessian curves. Indeed, the same com-

pression function works also on generalized Hessian curves over fields of the char-

acteristic greater than 3. Let us see, that g6(x, y) = x3 + y3 = dxy − a =

d · fGH,6(x, y)− a.

On a generalized Hessian curve, the opposite point to point P = (x, y) equals

to −P = (y, x). Let ω be a nontrivial cube root from 1, which means that

ω2 + ω + 1 = 0. Then T3 = (1 : −ω : 0) is a point of order 3 and for every point

P ∈ EGH holds P + T3 = (ωX : ω−1Y : Z).
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5.1. Compression function fGH,6(P ) = xy. Now we present formulas for dif-

ferential addition and doubling for the compression function fGH,6. Let us con-

sider points P = (xP , yP ), Q = (xQ, yQ), P − Q = (xP−Q, yP−Q) and P + Q =

(xP+Q, yP+Q) on the generalized Hessian curve EGH , and set rP = fGH,6(P ),

rQ = fGH,6(Q), rP−Q = fGH,6(P −Q), and rP+Q = fGH,6(P +Q).

5.1.1. Differential addition. It will be showed that for points P and Q the for-

mula for a differential addition is as follows:

rP+QrP−Q =
rP

2rQ
2 − adrP rQ + a2rQ + a2rP

(rQ − rP )2
. (9)

Using Sylvester formulas, one obtains

xP+Q =
y2PxQ − y2QxP
xQyQ − xP yP

, yP+Q =
x2P yQ − x2QyP
xQyQ − xP yP

,

xP−Q =
xPx

2
Q − y2P yQ

xP yP − xQyQ
, yP−Q =

−x2PxQ + yP y
2
Q

xP yP − xQyQ
.

After multiplication rP+QrP−Q = xP+QyP+QxPQ
yP−Q one obtains

xP+QyP+QxPQ
yP−Q = L

M , where

L = (xP yP )
3y6Q − (xP yP )(xQyQ)

2y3P y
3
Q − x3P (xQyQ)2(xP yP )y3Q

− (xP yP )
2(xQyQ)y

3
P y

3
Q + (xP yP )

2(xQyQ)
4 − x3P (xQyQ)(xP yP )2y3Q

+ (xQyQ)
3y6P + 2(xP yP )

3(xQyQ)
3 + x6P (xQyQ)

3 − (xP yP )x
3
Qy

3
P (xQyQ)

2

+ (xP yP )
4(xQyQ)

2 − x3Px3Q(xP yP )(xQyQ)2 − (xP yP )
2x3Qy

3
P (xQyQ)

− x3Px3Q(xP yP )2(xQyQ) + (xP yP )
3x6Q,

M = ((xP yP )− (xQyQ))
4.

Substituting rP = xP yP and rQ = xQyQ, one obtains

L = rP
3(x6Q + y6Q)− rP rQ2(y3P y

3
Q + x3P y

3
Q + x3Qy

3
P + x3Px

3
Q)

− rP 2rQ(y
3
P y

3
Q + x3P y

3
Q + x3Px

3
Q + x3Qy

3
P ) + rP

2rQ
4

+ rQ
3y6P + 2rP

3rQ
3 + x6P rQ

3 + rP
4rQ

2.

Since points P,Q ∈ EGH , that is

x3P + y3P = drP − a (10)
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and

x3Q + y3Q = drQ − a,

and after the multiplication of these formulas one obtains

y3P y
3
Q + x3P y

3
Q + x3Qy

3
P + x3Px

3
Q = (drP − a)(drQ − a).

It means that

L = rP
2rQ

4 + 2rP
3rQ

3 + rP
4rQ

2 + rP
3(x6Q + y6Q) + rQ

3(x6P + y6P )

− rP rQ2(drP − a)(drQ − a)− rP 2rQ(drP − a)(drQ − a).

Using the following equalities

(x3P + y3P )
2 = x6P + y6P + 2x3P y

3
P = x6P + y6P + 2rP

3,

(x3Q + y3Q)
2 = x6Q + y6Q + 2x3Qy

3
Q = x6Q + y6Q + 2rQ

3,

one obtains that
x6P + y6P = (drP − a)2 − 2rP

3,

x6Q + y6Q = (drQ − a)2 − 2rQ
3.

(11)

Using equalities from (11) one obtains that

L = rP
2rQ

4 + 2rP
3rQ

3 + rP
4rQ

2rP
3((drQ − a)2 − 2rQ

3)rQ
3((drP − a)2 − 2rP

3)

− rP rQ2(drP − a)(drQ − a)− rP 2rQ(drP − a)(drQ − a)

It is worth noting that L may be factorized into form

L = (rQ − rP )2(rP 2rQ
2 − adrP rQ + a2rQ + a2rP ).

Finally:

rP+QrP−Q =
(rQ − rP )2(rP 2rQ

2 − adrP rQ + a2rQ + a2rP )

(rQ − rP )4

and

rP+QrP−Q =
rP

2rQ
2 − adrP rQ + a2rQ + a2rP

(rQ − rP )2
.

Remark 4. For the compression function fGH,6(P ) = rP = xP yP represented

as (RP : SP ) in RZ coordinates we have

RP+QRP−Q

SP+QSP−Q
=
R2

PR
2
Q − adRPRQSPSQ + a2SPSQ(RPSQ +RQSP )

(RPSQ −RQSP )
2 . (12)
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5.1.2. Doubling. Using doubling formulas on the generalized Hessian curve

x[2]P =
yP (a− x3P )
x3P − y3P

, y[2]P =
xP (y

3
P − a)

x3P − y3P
,

it is possible to present x[2]P y[2]P = r[2]P as a rational function depending on

rP , a, d.

After multiplication of x[2]P y[2]P one obtains

x[2]P y[2]P =
xP (a− x3P )yP (y3P − a)

(x3P − y3P )2
=
xP yP (a(y

3
P + x3P )− y3Px3P − a2)

(x6P − 2x3P y
3
P + y6P )

.

Using equalities (10) and (11), one gets

r[2]P =
rP (a(drP − a)− rP 3 − a2)

(drP − a)2 − 4rP 3

=
rP (adrP − 2a2 − rP 3)

(drP − a)2 − 4rP 3
=
adrP

2 − 2a2rP − rP 4

(drP − a)2 − 4rP 3
.

Remark 5. For the compression function fGH,6(P ) = rP = xP yP represented

as (RP : SP ) in RZ coordinates we have

R[2]P

S[2]P
=

adR2
PS

2
P − 2a2RPS

3
P −R4

P

SP (SP (dRP − aSP )2 − 4R3
P )
. (13)

6. Applications of high-degree compression functions in isogeny-based

cryptography

A method for computing an odd general ℓ-isogeny on a generalized Hessian

curve using the compression function fGH,6(x, y) = xy will be described below.

Using identity

x3 + y3 = dxy − a,

where r = xy, and Equation (1), one may finally obtain that

a′ = aℓ, d′ =

(
(1− 2n)d+ 6

s∑
i=1

(
dri − a
ri

)) s∏
i=1

ri. (14)

Finally, using formula (3), one obtains that

fGH,6(ϕ(P )) =
∏

Q ̸=(1:−1:0)∈F

xP+QyP+Q =
∏

Q̸=(1:−1:0)∈F

fGH,6(P +Q)

=

s∏
i=1

fGH,6(P +Q)fGH,6(P −Q),

which may be easily computed using formula (9).
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Remark 6. In the case of 2-isogenies, the computations have to be a little

different. Point of order 2 on a generalized Hessian curve is always of the form

Q = (xQ, yQ). where xQ = yQ. Setting rQ = xQyQ = x2Q and using generalized

Hessian curve equation, one obtains that

2x3Q + a = dx2Q

is equivalent to

2rQxQ + a = drQ.

From the above equation, one obtains that

xQ =
drQ − a
2rQ

.

For Q being a point of order 2, the formula xP+QyP+Q+xP−QyP−Q is equal

to 2xP+QyP+Q = 2rP+Q. Using Sylvester formula [8] for point addition and

evaluating xP+QyP+Q + xP−QyP−Q, one obtains that

rP+Q =
rQ(rQrP + rP

2 − xQ(drP − a))
(rQ − rP )2

.

Finally, for the 2-isogeny ϕ2(P ) with the kernel F = {(1 : −1 : 0), (xQ : xQ : 1)}
it holds that

fGH,6(ϕ2(P )) = rP+Q =
rQ(rQrP + rP

2 − xQ(drP − a))
(rQ − rP )2

=
2rP r

2
Q + (2r2P − d2rP + ad)rQ + adrP − a2

2(rQ − rP )2
.

Remark 7. Let us note that the compression function fGH,6(x, y) = xy on

a Hessian curve (and, thus, on a generalized and twisted Hessian curve) cannot

be used for the computation of all possible 3-isogenies. Therefore, it is useless

to the isogeny-based cryptography if the computation of 3-isogenies is neces-

sary. It is worth noting that each 3-isogeny on Hessian curve [2] is generated by

⟨T1⟩ = ⟨(−1 : 0 : 1)⟩ or ⟨T2⟩ = ⟨(−ω : 0 : 1)⟩ or ⟨T3⟩ = ⟨(−ω2 : 0 : 1)⟩ or
⟨T4⟩ = ⟨(1 : −ω : 0)⟩. At the same time, fGH,6(T1) = fGH,6(T2) = fGH,6(T3) =

(0 : 1). Therefore, it is impossible to distinguish a point that should be the kernel

of a given 3-isogeny. However, fGH,6(T4) = (−ω : 0).
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6.1. Computational cost for operations using the compression function

fGH,6(x, y) = xy on a generalized Hessian curve.

6.1.1. Differential addition and doubling in projective coordinates. Let

a = (a1 : a2) and d = (d1 : d2). We can write a = (a1d2 : a2d2) = (aL : M)

and d = (d1a2 : a2d2) = (dL : M). By (12) for the compression function

fGH,6(P ) = rP = xP yP in the projective representation (RP : SP ) the formulae

for differential addition is

RP+QRP+Q

SP+QSP−Q
=
M2R2

PR
2
Q − aLdLRPRQSPSQ + a2LSPSQ(RPSQ +RQSP )

M2 (RPSQ −RQSP )
2 .

If a = 1 then for d = (d1 : d2) one obtains

RP+QRP+Q

SP+QSP−Q
=
d2
(
R2

PR
2
Q + SPSQ(RPSQ +RQSP )

)
− d1RPRQSPSQ

d2 (RPSQ −RQSP )
2 .

Using (13) we obtain the formula for doubling

R[2]P

S[2]P
=

aLdLR
2
PS

2
P − 2a2LRPS

3
P −M2R4

P

SP (SP (dLRP − aLSP )2 − 4M2R3
P )
.

If a = 1 then for d = (d1 : d2) one obtains

R[2]P

S[2]P
=

d1d2R
2
PS

2
P − 2d22RPS

3
P − d22R4

P

SP (SP (d1RP − d2SP )2 − 4d22R
3
P )
.

6.1.2. Isogeny computations. Let us consider the isogeny ϕ : EGH → E′
GH of

odd degree ℓ = 1 + 2s with the kernel F = {(1 : −1 : 0)} ∪
∑s

i=1 {Qi,−Qi}.
Let fGH,6(Qi) = ri = (Ri : Si) for i = 1, s. For the application of projective

representation of the compression function fGH,6(P ) = (RP : SP ) to the isogeny-

based cryptography, according to equation (14) one obtains

d′ =

(
(1− 4s)d+ 6

s∑
i=1

(
dRi − aSi

Ri

)) s∏
i=1

Ri

Si
.

For l = 5 (s = 2), we have got

d′ =

(
−7d+ 6

(
dR1 − aS1

R1
+
dR2 − aS2

R2

))
R1R2

S1S2

=
−7dR1R2 + 6 (R2(dR1 − aS1) +R1(dR2 − aS2))

S1S2
.
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Let a = (a1 : a2) and d = (d1 : d2). Writing a = (a1d2 : a2d2) = (aL : M) and

d = (d1a2 : a2d2) = (dL :M) one gets

(d′1 : d′2) =

(
(1− 4s)dL

M
+ 6

s∑
i=1

(
dLRi − aLSi

MRi

)) s∏
i=1

Ri

Si
.

In case of ℓ = 5 one gets

(d′1 : d′2) =
−7dR1R2 + 6 (R2(dR1 − aS1) +R1(dR2 − aS2))

MS1S2
.

If a = 1 then for d = (d1 : d2) one obtains

(d′1 : d′2) =

(
(1− 4s)d1

d2
+ 6

s∑
i=1

(
d1Ri − d2Si

d2Ri

)) s∏
i=1

Ri

Si
.

For ℓ = 5 we get

(d′1 : d′2) =
−7dR1R2 + 6 (R2(d1R1 − d2S1) +R1(d1R2 − d2S2))

d2S1S2
.

For P = (XP : YP : ZP ) the image of P in isogeny ϕ is given by

ϕ(P ) =

 ∏
Q∈F−{(1:−1:0)}

XP+Q :
∏

Q∈F−{(1:−1:0)}

YP+Q :
∏

Q∈F−{(1:−1:0)}

ZP+Q

 .

For the compression function fGH,6(P ) = rP = xP yP represented as (RP : SP ),

one gets

fGH,6(ϕ(P )) =

(
s∏

i=1

RP+QiRP−Qi :

s∏
i=1

SP+QiSP−Qi

)

=
( s∏

i=1

(
R2

PR
2
Qi
− adRPRQi

SPSQi
+ a2SPSQi

(RPSQi
+RQi

SP )
)
:

s∏
i=1

(RPSQi
−RQi

SP )
2
)
.

Let a = (a1 : a2) and d = (d1 : d2). We can write a = (a1d2 : a2d2) = (aL : M)

and d = (d1a2 : a2d2) = (dL :M). Then one gets

fGH,6(ϕ(P )) =
( s∏

i=1

(
M2R2

PR
2
Qi
− aLdLRPRQiSPSQi

+a2LSPSQi
(RPSQi

+RQi
SP )

)
:

s∏
i=1

M2 (RPSQi
−RQi

SP )
2
)
.
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If a = 1 then for d = (d1 : d2) one obtains

fGH,6(ϕ(P )) =
( s∏

i=1

(
d2
(
R2

PR
2
Qi

+ SPSQi(RPSQi +RQiSP )
)

−d1RPRQiSPSQi) :

s∏
i=1

d2 (RPSQi −RQiSP )
2
)
.

Computational costs for differential addition and doubling operations

on a generalized Hessian curve with the compression function fGH,6 are presented

in Table 1, where M, S and c mean multiplication, squaring and multiplication

by a constant respectively.

Operation Computational cost

Differential addition (eq. (12)) 19M+3S

Differential addition (eq. (6.1.1)) 11M+4S

Differential addition (eq. (6.1.1)) 7M+3S

Doubling (eq. (13)) 11M+4S+2c

Doubling (eq. (6.1.1)) 14M+4S+2c

Doubling (eq. (6.1.1)) 14M+4S+2c

Table 1. Computational costs for differential addition and doubling

Computational costs for 5-isogeny computations and evaluation on a generalized

Hessian curve with the compression function fGH,6 are presented in Table 2.

Operation Computational cost

5-isogenous EHG curve (eq. (6.1.2)) 8M+2c

5-isogenous EHG curve (eq. (6.1.2)) 9M+2c

5-isogenous EHG curve (eq. (6.1.2)) 9M+2c

Point evaluation at 5-isogeny (eq. (6.1.2)) 11M+3S

Point evaluation at 5-isogeny (eq. (6.1.2)) 13M+3S

Point evaluation at 5-isogeny (eq. (6.1.2)) 11M+3S

Table 2. Computational costs for 5-isogeny computations

7. Conclusion

This paper has presented how to obtain differential addition and doubling

formula for the compression function of degrees 2 and 6 on generalized Hessian
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curves. However, such formulas have been previously presented in [5] and [7].

This time these formulas have been obtained using elementary algebra methods,

not the Gröbner basis mechanism. The most important part of this paper is pre-

senting formulas for computing 2,3, and ℓ-isogenies on generalized Hessian curves

using the compression function of degree 2 and formulas for general computing

ℓ-isogenies, for ℓ ̸= 3. In the case of the compression function of degree 6, it is

worth noting that computing 3-isogenies, in this case, is impossible because it

is impossible to distinguish a compression of different points of order 3.

As we presented in the paper, it is clear that the compression function of

degree 6 is much more convenient for using the isogeny-based cryptography

because computation and evaluation of ℓ-isogeny are, in this case, much more

efficient than similar computations for the compression function of degree 2. This

situation is because the compression function of degree 6 has a multiplicative

character, and the compression function of degree 2 has an additive character.
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genies over hessian model of elliptic curves, IACR Cryptol. ePrint Arch. (2019),

https://eprint.iacr.org/2019/1480.

[3] W. Castryck, T. Lange, C. Martindale, L. Panny and J. Renes, CSIDH: An efficient
post-quantum commutative group action, In: International Conference on the Theory and

Application of Cryptology and Information Security, 2018, 395–427.

[4] T. Dang and D. Moody, Twisted hessian isogenies, IACR Cryptol. ePrint Arch. (2019),

https://eprint.iacr.org/2019/1003.
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682 M. Wroński and T. Kijko

[10] A. Rostovtsev and A. Stolbunov, Public-key cryptosystem based on isogenies, IACR
Cryptol. ePrint Arch. (2006), https://eprint.iacr.org/2006/145.pdf.
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