
Publ. Math. Debrecen

Supplementum 100 (2022), 639–653

DOI: 10.5486/PMD.2022.Suppl.6

Application of Velusqrt algorithm to Huff’s curves

By Michal/ Wroński

Abstract. In 2020 Bernstein, De Feo, Leroux, and Smith presented a new odd-

degree ℓ-isogeny computation method called Velusqrt. This method has complexity

Õ(
√
ℓ), compared to the complexity of Õ(ℓ) of the classical Vélu method. In this pa-

per, the application of the Velusqrt method to Huff’s curves is presented. It is shown

how to compute odd-degree isogeny on Huff’s curves using the Velusqrt algorithm and

x-line arithmetic for different compression functions, especially for degree 4 compression

function f4,x2 = x2.

1. Introduction

In [1] Bernstein, De Feo, Leroux, and Smith presented an odd-degree isogeny

computation method called Velusqrt. They modified the algorithm for the eval-

uation of polynomials whose roots are powers hS(α) =
∏

s∈S(α− ζs), with com-

plexity Õ(
√
#S), to use a similar technique with x-line arithmetic for points on

an elliptic curve to evaluate hS(α) =
∏

s∈S(α − f([s]P )), where f : E → Fq is

compression function. Such an algorithm has complexity Õ(
√
ℓ), where ℓ is the

degree of the isogeny.

Compression on elliptic curves (often called x-line arithmetic) is mainly used

to reduce key sizes and protect solutions against side-channel attacks. If E is

an elliptic curve over a field K and f : E → K is a rational function, for which

f(P ) = f(−P ) for all P ∈ E, then f is a compression function and for any k ∈ Z
holds that [k]f(P ) = f([k]P ). For example, on Weierstrass and Montgomery

Mathematics Subject Classification: 94A60, 14K02, 14H52.
Key words and phrases: general Huff’s curves and Huff’s curves and compression on elliptic

curves and isogeny-based cryptography and Velusqrt method.



640 M. Wroński

curves f(x, y) = x is a compression function. Moreover, for compression func-

tion f : E → K there exist rational functions for doubling D(x) ∈ K(x) and

differential additions F1

F0
, F2

F0
∈ K(x, y) such that

f([2]P ) = D(f(P )),

f(P +Q) + f(Q− P ) =
F1(f(P ), f(Q))

F0(f(P ), f(Q))
,

f(P +Q)f(Q− P ) =
F2(f(P ), f(Q))

F0(f(P ), f(Q))

for any points P,Q ∈ E. After functions D and F0 and F1 or F1 and F2 are

found, one can compute [k]f(P ) using values of f and the Montgomery ladder

algorithm. There also exists a rational map B : E ×K ×K → E such that

Q = B(P, f(Q), f(P +Q)) (1)

for generic points P,Q ∈ E, which we call the point recovery formula. Such

formula allows for P ∈ E to compute [k]f(P ) using the Montgomery ladder

algorithm, which also gives [k + 1]f(P ), and to recover point [k]P on E given

P, [k]f(P ), [k + 1]f(P ) substituting Q = [k]P to the formula (1).

Many compression functions of different degrees have been considered in the

case of alternative models of elliptic curves. The paper [4] has presented degree

2 compression functions on Huff’s and general Huff’s curves. Moreover, in [6]

there have been presented in the case of Hessian curves compression functions of

degree 6 and 18, in the case of Huff’s curves, compression functions of degree 4,

8, 16, and in the case of Edwards curves, compression functions of degree 4 and

8. Comparing to the results obtained in the papers [4] and [6], in this paper, new

degree 4 compression functions f4,x2 = x2 and f4,y2 = y2 have been presented,

which are suitable for applications of the Velusqrt algorithm to Huff’s curves.

Computation of isogeny from kernel polynomials in the case of Huff’s curves has

been obtained using formulas obtained by Moody and Shumow [11] for general

Huff’s curves and formulas obtained by Dryl/o et al. [7] for Huff’s curves.

It is tough to find suitable formulas using only elementary methods in many

cases. That is why the Gröbner basis mechanism is often used, where searching for

convenient functions can be automatized. Description of such method is presented

in [3] for the compression function of degree 2 and in [6] for compression functions

of high-degree, where program from [3] was modified.

In this paper, when necessary, the method described in [6] for searching for

suitable functions will be used. The correctness of the formulas presented in



Application of Velusqrt algorithm to Huff’s curves 641

the paper can be checked using the program Huff Correctness x square from [5],

which are analogous to the programs used for checking the correctness of the

formulas presented in [7].

The core algorithm problem of the Velusqrt method is contained in a more

general framework, which is an efficient evaluation of polynomial and rational

functions over Fq whose roots are values of a function from a cyclic group to

Fq. In such case, one has to fix a cyclic group G, a generator P of G and

a function f : G→ Fq. For each finite subset S of Z, one then defines polynomial

hS(X) =
∏

s∈S(X − f([s]P )), where [s]P is the sum of s copies of P (group G is

written additively).

So, given f and S, one wants then to evaluate hS(X) at point α, for any

α ∈ Fq. The standard way of computation of hS(α) requires O(#S) operations

in Fq. Even though, if S has enough additive structure and f is sufficiently com-

patible with the group structure on G, then one can compute hS(α) in Õ(
√
#S)

operations in Fq. For example, this idea is applied in Pollard’s and Strassen’s

factorization algorithms.

We now define an index system.

Definition 1. [1, Definition 4.6] Let I and J be finite sets of integers.

(1) We say that (I, J) is an index system if the maps I × J → Z defined by

(i, j) → i+ j and (i, j) → i− j are both injective and have disjoint images.

(2) If S is a finite subset of Z, then we say that an index system (I, J) is an index

system for S if I + J and I − J are both contained in S.

If (I, J) is an index system, then the sets I + J and I − J are in bijection with

I × J . We write I ± J for the union of I + J and I − J .

The main result of [1] is an adaptation of Pollard’s idea to evaluate hI±J(α),

where hI±J(α) is the kernel polynomial. The biggest problem which had to be

solved is that f([i+ j]P ) cannot be represented only by f([i]P ) and f([j]P ).

Even though it is possible to do the following trick. If f(P ) is a compression

function (whose degree is coprime with the degree of the isogeny) on elliptic curve

E, then exist rational functions F0, F1 and F2 such that A1 = F1(f(P ),f(Q))
F0(f(P ),f(Q)) =

f(P + Q) + f(P − Q) and A2 = F2(f(P ),f(Q))
F0(f(P ),f(Q)) = f(P + Q)f(P − Q). Then

(X − f(P +Q))(X − f(P −Q)) = X2 − F1(f(P ),f(Q))
F0(f(P ),f(Q))X + F2(f(P ),f(Q))

F0(f(P ),f(Q)) . This

property then leads to the following equations



642 M. Wroński

hI±J(X) =
∏

(i,j)∈I×J

(X − f([i+ j]P ))(X − f([i− j]P ))

=
∏
i∈I

∏
j∈J

(X2 −A1(f([i]P ), f([j]P ))X +A2(f([i]P ), f([j]P ))).

It means that most of S cannot be decomposed as I +J , but such decomposition

involves both I + J and I − J . Using these observations makes it possible to

construct Algorithm 1.

Algorithm 1: Computing hS(α) =
∏

s∈S (α− f([s]P )), based on [1,

Algorithm 2]

Data: a prime power q, an elliptic curve E/Fq, P ∈ E(Fq), a finite

subset S ⊂ Z, an index system (I, J) for S such that

S ∩ nZ = I ∩ nZ = J ∩ nZ = {}, where n is the order of P

Input: α ∈ Fq

Output: hS(α), where hS(X) =
∏

s∈S (X − f([s]P ))

(1) hI =
∏

i∈I (Z − f([i]P )) ∈ Fq[Z]

(2) DJ =
∏

j∈J F0(Z, f([j]P )) ∈ Fq[Z]

(3) ∆I,J = ResZ (hI , DJ) ∈ Fq

(4) EJ =
∏

j∈J

(
F0(Z, f([j]P ))α

2 − F1(Z, f([j]P ))α+ F2(Z, f([j]P ))
)
∈ Fq[Z]

(5) R = ResZ (hi, Ej) ∈ Fq

(6) hK =
∏

k∈S\(I±J) (α− f([k]P )) ∈ Fq

return hK ·R
∆I,J

Example 1. We use the following Example [1, Example 4.12]. Let us suppose

that we want for Weierstrass curve, with compression f(P ) = x to evaluate

hS(X) =
∏

s∈S (X − x([s]P )), where S = {1, 3, . . . , ℓ − 2}. Let us note that set

S can be replaced by any set of representatives of ((Z/ℓZ) \ {0}) /⟨±1⟩.
Let I = {2b(2i + 1)|0 ≤ i ≤ b′} and J = {1, 3, . . . , 2b − 1} with b =

⌊√
ℓ−1
2

⌋
and (for b > 0) b′ =

⌊
ℓ−1
4b

⌋
. Then (I, J) is an index system for S. What is more

S \ (I ± J) = K, were K = {4bb′ + 1, . . . , ℓ − 4, ℓ − 2}. Algorithm 1 computes

hS(α) for any α ∈ Fq in Õ
(√

ℓ
)
.

As was shown in [1], the Velusqrt algorithm can be applied to the practical

implementations of CSIDH and CSURF, obtaining faster solutions for ℓ ⪆ 110

(it depends on many factors). The presented algorithm gives a 16% speedup

for CSIDH-1024. In other presented situations, the speedup is less significant.

Because the presented algorithm has much better asymptotic complexity than the



Application of Velusqrt algorithm to Huff’s curves 643

method of Vélu for isogeny evaluation, for isogeny-based protocols with a higher

level of security (e.g., CSIDH-2048, CSIDH-4096), the speedup should be much

more significant.

What is more Chávez-Saab, Chi-Doml
′nguez, Jaques and Rodrl′guez-

Henrl′quez in [2] considered constant-time implementation of CSIDH using the

Velusqrt method.

In the next sections, using these ideas, how to adapt the Velusqrt algorithm

to Huff’s model of elliptic curves will be shown.

2. Huff’s curves and compression functions

In this section will be presented basic information on Huff’s curves and ap-

plications of compression functions to Huff’s curves arithmetic.

2.1. Huff’s curves. Huff’s curve over K is provided by the equation

(see e.g. [8])

Ha,b : ax(y2 − 1) = by(x2 − 1),

where a2 ̸= b2 and a, b ̸= 0. The neutral element is the pointO = (0, 0) and for any

point P = (xP , yP ) the opposite point is equal to −P = −(xP , yP ) = (−xP ,−yP ).
The addition law for two points P = (xP , yP ), Q = (xQ, yQ) on Ha,b is given by

xR =
(xP + xQ)(1 + yP yQ)

(1 + xPxQ)(1− yP yQ)
,

yR =
(yP + yQ)(1 + xPxQ)

(1− xPxQ)(1 + yP yQ)
,

where P +Q = (xR, yR).

Doubling and differential addition on Huff’s curve using a degree 2 compres-

sion function f2(x, y) = xy are given by (see [7])

f2([2]P ) =
4f2(P )(f2(P )

2 +
(
b
a + a

b

)
f2(P ) + 1)

(f2(P )2 − 1)2
, (2)

f2(P +Q)f2(P −Q) =

(
f2(P )− f2(Q)

f2(P )f2(Q)− 1

)2

. (3)

One can also find in [7] the formula

f2(P +Q) + f2(P −Q)

=
2(f2(P )f2(Q)2+f2(P )2f2(Q)+2 b

a f2(P )f2(Q)+2 a
b f2(P )f2(Q)+f2(Q)+f2(P ))

(f2(P )f2(Q)−1)2



644 M. Wroński

using the method described in [3]. The formulas presented above can be checked

using the program GeneralHuff Correctness x square from [5].

Moreover, one can also find the formula for point recovery. For generic points

P = (xP , yP ), Q = (xQ, yQ) on Ha,b if we are given P, f2(Q), f2(P + Q), then

coordinates of Q are provided byxQ = f2(Q) (yP f2(P+Q)+xP )(bf2(Q)+a)+(af2(Q)+b)(xP f2(P+Q)+yP )
(bf2(Q)+a)(f2(P+Q)−f2(Q)+xP yP (f2(Q)f2(P+Q)−1)) ,

yQ = f2(Q)
xQ

.

In projective coordinates, formulas (2) and (3) can be computed as efficiently

as formulas [10] for Montgomery curves. In this way, doubling requires 2M+2S+c,

and differential addition has a cost equal to 4M +2S. More details can be found

in [7].

2.2. Huff’s isogenies computation using compression functions. This

subsection will present formulas for isogeny computation from [7], where it is also

shown how to compute isogeny of an odd degree using a compression function

f2(x, y) = xy of degree 2.

Theorem 1. [7, Theorem 4] Let F = {(0, 0), (αi, βi), (−αi,−βi) : i =

1 . . . s}, where −(αi, βi) = (−αi,−βi), be the kernel of an isogeny ψ. Let

A =
∏s

i=1 αi and B =
∏s

i=1 βi. Let us define

ψ(P ) =
(
xP (−1)s

∏
Q ̸=(0,0)∈F xP+Q, yP (−1)s

∏
Q̸=(0,0)∈F yP+Q

)
.

Then ψ is a ℓ-isogeny with kernel F , from the curve Ha,b, to the curve Ha′,b′ ,

where a′ = a
A2 = a∏s

i=1 x2
Qi

and b′ = b
B2 = b∏s

i=1 y2
Qi

.

Corollary 1. [7, Corollary 2] Let F be the kernel of the odd-degree isogeny
ψ. For compression function of degree 2 given by f2(x, y) = xy let us note that
f2(ψ(P )) is provided by

f2(ψ(P )) = xP (−1)s
∏

Q̸=(0,0)∈F

xP+Q · yP (−1)s
∏

Q̸=(0,0)∈F

yP+Q,

which is equal to

f2(ψ(P )) = xP yP
∏

Q̸=(0,0)∈F xP+QyP+Q = f2(P )
∏

Q∈F+ f2(P +Q)f2(P −Q),

where F+ is the set {(αi, βi) : i = 1, . . . , s}.



Application of Velusqrt algorithm to Huff’s curves 645

To find the coefficients a′ and b′ of Huff’s curve Ha′,b′ , if f2(P ) = xP yP = rP ,

one can use formulas from [7] for x2 and y2 as rational functions of r, where r = xy

is compression function of degree 2:

x2 =
r(ar + b)

br + a
, y2 =

r(br + a)

ar + b
.

Finally

a′ =
a

(
∏s

i=1 xQi
)
2 = a

s∏
i=1

(brQi + a)

rQi
(arQi

+ b)
,

b′ =
b

(
∏s

i=1 yQi
)
2 = b

s∏
i=1

(arQi
+ b)

rQi
(brQi

+ a)
.

3. Application to Velusqrt

This section shows how to apply the Velusqrt algorithm for Huff’s curves.

From the computational point of view, the following corollary will be important.

Corollary 2. If compression function fd is of degree d and GCD(d, ℓ) = 1,

where ℓ is odd, one can evaluate hS(X) =
∏

s∈S (X − fd([s]P )) using set S and

an index system from Example 1 for any α ∈ Fq in Õ
(√

ℓ
)
operations.

Let us note that in such case (the same as in the case of the compression

function of degree 2), if F is a group of order ℓ, then for every P1, P2 ∈ F holds

that fd(P1) = fd(P2) if and only if P1 = ±P2, as same as for compression function

of degree 2. It means that for every i, j ∈ S, holds that fd([i]P ) = fd([j]P ) if and

only if i = ±j so there will not be any additional redundancy.

3.1. Compression functions of degree 4. As will be shown later, to apply

the Velusqrt technique to Huff’s curves isogeny computation, it is convenient to

use the formula for f4,x2(P + Q) + f4,x2(P − Q), f4,x2(P + Q)f4,x2(P − Q) or

f4,y2(P + Q) + f4,y2(P − Q), f4,y2(P + Q)f4,y2(P − Q), where f4,x2(P ) = x2P is

compression function of degree 4, similarly f4,y2(P ) = y2P is compression function

of degree 4 also.

We will show that f4,x2(P ) = x2P is a compression function of degree 4.

In [9], Kohel was studied symmetric quartic models over binary fields with

a rational 4-torsion point T . He showed that a genus one curve admits translations

by rational points and translation morphism τT = P+T on curve E is projectively

linear (induced by a linear transformation of the ambient projective space), if and



646 M. Wroński

only if E is a degree n model determined by a complete linear system in Pn−1

and T is in the n-torsion subgroup. Such a method was used in [6] to obtain

high-degree compression functions on many alternative models of elliptic curves.

This paper uses his ideas to find new compression functions of high degree

(degree 4) for Huff’s curves. The compression functions for which we are looking

for are invariant on the action of involution and translation by specific point T ,

in this case, the point of order 2, which means that for the compression function

of degree 4 holds that f4(P ) = f4(Q) if and only if Q = ±P + [k]T , for k = 0, 1.

Let us note that if r = x2, then for each r we can find two distinct x’s at

most. Moreover, using Huff’s curve equation, for each x one can find at most two

distinct y’s, which means that there are at most four distinct points Pi, i = 0, 3,

having the same value of compression f4,x2(Pi) = r. One can find that the

compression function f4,x2(P ) is invariant under involution and translation by 2-

torsion point (0 : 1 : 0), because (x, y) + (0 : 1 : 0) = (−x, 1y ). Then, r = f4,x2(P )

for P ∈ {(x, y), (−x,−y), (−x, 1y ), (x,−
1
y )}.

We will firstly find formulas for f4,x2(P +Q) + f4,x2(P −Q) and f4,x2(P +

Q)f4,x2(P −Q) on Huff’s curve. Let rP = f4,x2(P ) and rQ = f4,x2(Q), then

f4,x2(P +Q) + f4,x2(P −Q) =
s1(rP , rQ)

s0(rP , rQ)
,

f4,x2(P +Q)f4,x2(P −Q) =
s2(rP , rQ)

s0(rP , rQ)
,

where

s0(rP , rQ) = (rP rQ − 1)
2
,

s1(rP , rQ) = −2

(
rP

2rQ + rP rQ
2 +

8a2 − 4b2

b2
rP rQ + rP + rQ

)
,

s2(rP , rQ) = (rP − rQ)
2
. (4)

Formula for doubling f4,x2([2]P ) is equal to N(r,a,b)
D(r,a,b) , where

N(r, a, b) = 4r

(
r2 +

4a2 − 2b2

b2
r + 1

)
,

D(r, a, b) =
(
r2 − 1

)2
. (5)



Application of Velusqrt algorithm to Huff’s curves 647

We can similarly find formulas for f4,y2(P +Q)+ f4,y2(P −Q) and f4,y2(P +

Q)f4,y2(P −Q)

f4,y2(P +Q) + f4,y2(P −Q) =
t1(rP , rQ)

t0(rP , rQ)
,

f4,y2(P +Q)f4,y2(P −Q) =
t2(rP , rQ)

t0(rP , rQ)
,

where

t0(rP , rQ) = (rP rQ − 1)
2
,

t1(rP , rQ) = −2

(
rP

2rQ + rP rQ
2 +

8b2 − 4a2

a2
rP rQ + rP + rQ

)
,

t2(rP , rQ) = (rP − rQ)
2
. (6)

Explanation 1. Formulas presented in (4) and (6) can be obtained using the

method described in [6]. The correctness of the formulas presented above can be

checked using the program Huff Correctness x square from [5].

3.2. Velusqrt on Huff’s curves. To obtain isogeny evaluation formulas for

Huff’s curves, we can use formulas for isogeny evaluation using kernel polynomials

on general Huff’s curves Ga,b : x(ay2 − 1) = y(bx2 − 1) [12], presented in [11].

The formula for odd ℓ-isogeny is in this case given by

ψ
(
P
)
=

 xg(x)

g(0)(bx)2sg
(

1
bx

) , yh(y)

h(0)(ay)2sh
(

1
ay

)
 ,

where F = {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s} is the kernel of the ℓ-isogeny

on general Huff’s curve, ℓ = 2s + 1, a′ = aℓh(0)2, b
′
= b

ℓ
g(0)2, g(x) =∏s

i=1

(
x2 − α2

i

)
, and h(y) =

∏s
i=1

(
y2 − β

2

i

)
.

Now let F = {(0, 0), (αi, βi), (−αi,−βi) : i = 1 . . . s}, where −(αi, βi) =

(−αi,−βi), be the kernel of an isogeny ψ of degree ℓ, where ℓ = 2s+ 1.

Let us define functions g(x) and h(x) as g(x) =
∏s

i=1

(
x2 − α2

i

)
, h(y) =∏s

i=1

(
y2 − β2

i

)
. Let ξ be an isomorphism from Huff’s curve Ha,b to general

Huff’s curve Ga,b, where a = 1
b2 , b =

1
a2 . For P = (x, y) the isomorphism ξ has

the form P = ξ(P ) = (ax, by) = (x, y),

Using isomorphism ξ : Ga,b → Ha,b (see [7]), we can make the following

transformations. Using ξ, we can transform the equation for isogeny evaluation

using kernel polynomials on general Huff’s curves as follows



648 M. Wroński

ψ(P ) = ψ(x, y) = ψ (ξx(P ), ξy(P ))

=

 axa2sg(x)

a2sg(0)
(
ba2x

)2s
g
(

1
ba2x

) , byb2sh(y)

b2sh(0) (ab2y)
2s
h
(

1
ab2y

)


=

 axg(x)

g(0)
(

1
a2 a2x

)2s
g
(

1
1
a2 a2x

) , byh(y)

h(0)
(

1
b2 b

2y
)2s

h
(

1
1
b2

b2y

)


=

 axg(x)

g(0) (x)
2s
g
(
1
x

) , byh(y)

h(0) (y)
2s
h
(

1
y

)
 .

Making further transformations, one obtains

ψ(P ) = ξ
(
ψ(P )

)
= ψ

(
ξx(P )

a′
,
ξy(P )

b′

)

=

 axg(x)

(−1)s a
g(0)g(0) (x)

2s
g
(
1
x

) , byh(y)

(−1)s b
h(0)h(0) (y)

2s
h
(

1
y

)


=

 (−1)sxg(x)

x2sg
(
1
x

) ,
(−1)syh(y)

y2sh
(

1
y

)
 . (7)

Additionally a′ = (−1)s a
g(0) and b′ = (−1)s b

h(0) .

Using Corollary 2, we conclude that g2(α) and h2(α) can be computed using

index system from Example 1 for any α ∈ Fq in Õ
(√

ℓ
)
operations.

Theorem 2. Using the compression function f2(P ) = xy = r one obtains

that

f2 (ψ(P )) =

rg2

(
r(ar + b)

br + a

)
h2

(
r(br + a)

ar + b

)
r2sg2

(
br + a

r(ar + b)

)
h2

(
ar + b

r(br + a)

) ,
where ri = αiβi, g2(z) =

∏s
i=1

(
z − ri(ari+b)

bri+a

)
, h2(z) =

∏s
i=1

(
z − ri(bri+a)

ari+b

)
,

a′ = (−1)s a
g2(0)

and b′ = (−1)s b
h2(0)

.

Proof. The formula for evaluation of the isogeny f2 (ψ(P )) is a straight-

forward adaptation of the formula (7). What is more, function g2(z) can be

computed using Algorithm 1, where for this function holds that f(P ) = r(ar+b)
br+a ,



Application of Velusqrt algorithm to Huff’s curves 649

where r = xy for any P = (x, y). Functions F0, F1, F2 appearing in Algorithm 1

are equal to s0, s1, s2 given by equation (4), respectively.

In the same manner, function h2(z) can be computed using Algorithm 1,

where for this function holds that f(P ) = r(br+a)
ar+b , where r = xy for any

P = (x, y). Functions F0, F1, F2 appearing in Algorithm 1 are equal to t0, t1, t2
given by equation (6), respectively. □

Theorem 3. Using the compression function f4,x2(P ) = x2 = r one obtains

that

f4,x2 (ψ(P )) =
rg4,x2 (r)

2

r2sg4,x2

(
1

r

)2 ,

where D̃(ri, a, b) = L̃(ri,a,b)

M̃(ri,a,b)
is a rational function of ri returning f4,y2([2]P )

having ri = f4,x2(Qi) = α2
i . Functions L̃(r, a, b), M̃(r, a, b) are given by equa-

tion (8) and g4,x2(z) =
∏s

i=1

(
z − r2i

)
, h4,x2(z) =

∏s
i=1

(
z − D̃(ri, a, b)

)
and

a′ = (−1)s a
g4,x2 (0)

and b′ = (−1)s b
h4,x2 (0)

.

Proof. We begin by showing some observations. Let us note that for ele-

ments of kernel F , having compression ri = α2
i , we cannot decide what the value

of is βi, because all points (αi, βi), (−αi,−βi), (αi,− 1
βi
), (−αi,

1
βi
) lie on the curve

Ha,b and all these points have the same value of compression f4,x2 , but only two

of these points belong to the kernel F : (αi, βi), (−αi,−βi). Of course, having

ri = α2
i , one can find αi by computing roots of degree 2 polynomial r − x2. In

such a case, both roots αi and −αi are proper because points (αi, βi), (−αi,−βi)
both belong to the kernel F of ℓ-isogeny.

In the next step, having αi (or −αi, we may assume that we have αi) it is

necessary to find proper βi. Having αi and using Huff’s curve equation, one can

find two possible values of y-coordinate: y1 = βi or y2 = − 1
βi
. Unfortunately, in

this case, only one value is proper. Let us note that if one computes ℓ-isogeny,

where ℓ is an odd number, then each element (αi, βi) of the kernel F has odd

order, but −(αi, βi) + (0 : 1 : 0) = (αi,− 1
βi
) has order equal to 2ℓ. So one can,

for both possible values of y-coordinates y1 = βi, y2 = 1
βi
, check the order of

element (αi, yj), for j = 1, 2 and then decide which element is the correct element

of the kernel F . Unfortunately, this method seems slow and generally useless in

practical implementations.

Now we will show another, much faster way of obtaining necessary compres-

sions {β2
i : i = i, . . . , s} of points of kernel F . First, let us note that we are

interested in the computation of ℓ-degree isogenies, where ℓ is odd. For sim-

plicity of the proof presented below, we also assume that ℓ is prime. What



650 M. Wroński

is more, if (αi, βi) belongs to the kernel of the isogeny, then such point has

order ℓ. Points (−αi,
1
βi
), (αi,− 1

βi
) can be obtained by translation of points

(αi, βi), (−αi,−βi) by 2-torsion point (0 : 1 : 0), so their order must be equal

to 2ℓ. Now we will show the most important observation. Let us note that for

P ∈ {(αi, βi), (−αi,−βi), (αi,− 1
βi
), (−αi,

1
βi
)}, however, one can obtain two dif-

ferent values of compressions f4,y2(Qi), because f4,y2(Qi) = β2
i or f4,y2(Qi) =

1
β2
i
,

but for point [2]Qi there is only one possible value of compression f4,y2([2]Qi).

What is more, if Qi ∈ F , then [2]Qi ∈ F if and only if #F is odd.

Points (αi, βi), (−αi,−βi) are of order ℓ and points (αi,− 1
βi
) = −(αi, βi) +

(0 : 1 : 0), (−αi,
1
βi
) = (αi, βi) + (0 : 1 : 0) are of order 2ℓ. Now let us note that

for Qi ∈ {(αi, βi), (−αi,−βi)}, point [2]Qi is of order ℓ and also [2]Qi belongs to

the kernel F generated by any of points (αi, βi), (−αi,−βi).
On the other hand, forQi ∈ {(αi,− 1

βi
), (−αi,

1
βi
)}, however, pointQi is of or-

der 2ℓ, but point [2]Qi is of order ℓ and also [2]Qi belongs to the kernel F generated

by any of points (αi, βi), (−αi,−βi), because [2](αi,− 1
βi
) = [2](−(αi, βi) + (0 :

1 : 0)) = −[2](αi, βi) and similarly [2](−αi,
1
βi
) = [2]((αi, βi) + (0 : 1 : 0)) =

[2](αi, βi). Because points [2](αi, βi) and −[2](αi, βi) are opposite, their values of

compression f4,y2 , are the same.

It means that for any point Qi ∈ {(αi, βi), (−αi,−βi), (αi,− 1
βi
), (−αi,

1
βi
)},

the value of compression f4,y2([2]Qi) is the same.

Let us note that if D̃(ri, a, b) is a rational function of ri returning f4,y2([2]Qi)

having ri = f4,x2(Qi) = α2
i , then

∏s
i=1

(
z − β2

i

)
=

∏s
i=1

(
z − D̃(r, a, b)

)
, where

holds that f4,y2(Qi) = β2
i .

What is more, having compression of any element of the kernel f4,y2(Qi) = β2
i

we can also obtain other elements. It is possible using, for example, formulas for

differential addition given in (4) and doubling, obtained by using the method

described in [6].

This formula is given by L(r,b,a)
M(r,b,a) (remember that Huff’s curve is symmetric:

H(x, y)a,b = H(y, x)b,a), where L(r, a, b) and M(r, a, b) are provided by (5).

The formula for evaluation of the isogeny f4,x2 (ψ(P )) is a straightforward

adaptation of the formula (7). What is more, function g4,x2(z) can be computed

using Algorithm 1, where for this function holds f(P ) = r, where r = x2 for any

P = (x, y). Functions F0, F1, F2 appearing in Algorithm 1 are equal to s0, s1, s2
given by equation (4), respectively.

In the same manner, function h4,x2(z) can be computed using Algorithm

1, where for this function holds that one can replace f(P ) = r, where r = y2



Application of Velusqrt algorithm to Huff’s curves 651

for any P = (x, y) by f4,y2([2]P ) = D̃(r, a, b). Functions F0, F1, F2 appearing in

Algorithm 1 are equal to t0, t1, t2 given by equation (6), respectively.

The correctness of the formulas presented above can be checked using the

program Huff Correctness x square from [5]. □

Now we will show how to compute f4,y2([2]P ) having f4,x2(P ) = r.

Theorem 4. If f4,x2(P ) = r, then f4,y2([2]P ) = L̃(r,a,b)

M̃(r,a,b)
, where

L̃(r, a, b) = 4
a2

b2
r(r + 1)2,

M̃(r, a, b) = r4 +
4a2 − 4b2

b2
r3 +

−8a2 + 6b2

b2
r2 +

4a2 − 4b2

b2
r + 1. (8)

Explanation 2. This formula can be found using the program from [3] and

using modifications for high-degree compressions described in [6]. Formula for

f4,y2([2]P ) knowing f4,x2(P ) = r can be found using the method described in

[6]. The correctness of the formulas presented above can be checked using the

program Huff Correctness x square from [5].

Using Corollary 2, we conclude that g4,x2(α) and h4,x2(α) can be computed

using index system from Example 1 for any α ∈ Fq in Õ
(√

ℓ
)
operations.

4. Conclusion

This paper presents the Velusqrt method’s application to Huff’s curve model.

Although the formula for the computation of ℓ-isogeny using kernel polynomial

for general Huff’s curve is known and was given in [11], we found a similar formula

for the case of Huff’s curves. What is more, we presented different compression

functions suitable for such applications. Presented by us, compression functions

of degree 4 seem to be efficient for evaluating ℓ-isogeny. They seem to be also

reasonable for computation of the ℓ-isogenous curves.

For all presented by us compression functions, one can use the same index

system as presented in Example 1 to apply the Velusqrt algorithm (Algorithm 1).

It is also worth noting that it is possible to obtain very similar formulas for

isogeny evaluation and computation formulas using the Velusqrt method in the

case of general Huff’s curves. In such a case, one can use the compression function

f4,x2 = x2 or f4,y2 = y2. Because obtaining these formulas is straightforward, we

omit their computations in this paper.



652 M. Wroński

Acknowledgments. I want to thank Robert Dryl/o and Tomasz Kijko

for joint works on elliptic curves’ compression functions. Moreover, I want to

thank Robert Dryl/o for automating the process of finding differential addition

and doubling formulas for a given compression function using the Gröbner basis

mechanism and being the lead author of the programs from [3] and [6] that I

adapted in this paper.

I also want to thank anonymous reviewers for their comments and sugges-

tions, that improved the paper.

References

[1] D. Bernstein, L. D. Feo, A. Leroux and B. Smith, Faster computation of isogenies of

large prime degree, arXiv:2003.10118 (2020), https://arxiv.org/abs/2003.10118.

[2] J. Chávez-Saab, J.-J. Chi-DomÍnguez, S. Jaques and F. RodrÍguez-HenrÍquez, The

SQALE of CSIDH: Square-root Vélu Quantum-resistant isogeny Action with Low Expo-
nents, IACR Cryptol. ePrint Arch. (2020), https://eprint.iacr.org/2020/1520.

[3] R. Dry Lo, T. Kijko and M. J. Wroński, Determining Formulas Related to Point Com-

pression on Alternative Models of Elliptic Curves, Fundamenta Informaticae 169 (2019),

285–294.

[4] R. Dry Lo, T. Kijko and M. J. Wroński, Efficient Montgomery-like formulas for general

Huff’s and Huff’s elliptic curves and their applications to the isogeny-based cryptography,
IACR Cryptol. ePrint Arch. (2020), https://eprint.iacr.org/2020/526.

[5] R. Dry Lo, T. Kijko and M. J. Wroński, 2020,

https://github.com/Michal-Wronski/Huff-compression.git

https://github.com/Michal-Wronski/Huff-compression/blob/master/
Huff Correctness x square.magma and

Huff diff add doub rec correctness checking.magma.

[6] R. Dry Lo, T. Kijko and M. J. Wroński, High-degree compression functions on alternative

models of elliptic curves and their applications, Fundamenta Informaticae 184 (2021),
107–139.

[7] R. Dry Lo, T. Kijko and M. J. Wroński, Arithmetic using compression on elliptic curves
in Huff’s form and its applications, International Journal of Electronics and Telecommu-

nications 67 (2021), 193–200.

[8] M. Joye, M. Tibouchi and D. Vergnaud, Huff’s model for elliptic curves, In: International
Algorithmic Number Theory Symposium, 2010, 234–250.

[9] D. Kohel, Efficient arithmetic on elliptic curves in characteristic 2, In: International Con-
ference on Cryptology in India, 2012, 378–398.

[10] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,
Mathematics of Computation 48 (1987), 243–264.



Application of Velusqrt algorithm to Huff’s curves 653

[11] D. Moody and D. Shumow, Analogues of Vélu’s formulas for isogenies on alternate models
of elliptic curves, Mathematics of Computation 85, 1929–1951.

[12] H. Wu and R. Feng, Elliptic curves in Huff’s model, Wuhan University Journal of Natural
Sciences 17 (2012), 473–480.

MICHA L WROŃSKI

DEPARTMENT OF CYBERNETICS

MILITARY UNIVERSITY OF TECHNOLOGY

KALISKIEGO STR. 2, WARSAW

POLAND

E-mail: michal.wronski@wat.edu.pl


