
Publ. Math. Debrecen

Supplementum 100 (2022), 617–637

DOI: 10.5486/PMD.2022.Suppl.5

Control flow obfuscation with irreducible loops
and self-modifying code

By Gregory Morse, Midya Alqaradaghi and Tamás Kozsik

Abstract. This paper considers an obfuscation scheme designed around runtime

generated self-modifying code and irreducible loops, both of which are notoriously dif-

ficult to reason about. This leads to a mechanism for both source and binary code

that increase resistance to static analysis as well as dynamic analysis. By making use

of the fact that static analysis of self-modifying code has limits in decidability as per

Rice’s theorem, and that transformation of irreducible loops to reducible ones using

techniques such as node-splitting or introduction of variables can have a quadratic com-

plexity increase on the size of the control-flow graph. Our construction looks at turning

an algorithm into the lowest abstraction level with multi-input logic gates, to evaluate

the most generic perspective on the scheme though it is applicable to any control-flow

graph. A final benefit is that although complicated and naturally inter-related, the

different ideas could be applied separately.

1. Introduction

Protection mechanisms in recent times have focused on virtualization mech-

anisms as a form of securing software from prying eyes of reverse engineers. Some

Mathematics Subject Classification: 68N01, 68R10.
Key words and phrases: x86, x86-64, Assembly language, self-modifying code, obfuscation, soft-

ware protection, control-flow graph, irreducible loops.
The research of Gregory Morse and Tamás Kozsik has been supported by the European Union,

co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental

Research Collaborations Grounding Innovation in Informatics and Infocommunications). Midya

Alqaradaghi has been supported by the Stipendium Hungaricum program.

618 G. Morse, M. Alqaradaghi and T. Kozsik

of the more successful implementations such as VMProtect have been largely de-

feated [16]. Other protections focus on anti-tamper capabilities and tend to rely

on encryption such as Denuvo have similarly been defeated [17].

One area of protection which has not been extensively studied is the use

of self-modifying code (SMC). Introducing it into binaries is possible with some

special memory access modification whether in a static binary file or in memory

created on-the-fly at runtime through operating system dependent procedures

and based on the processor’s memory access enforcement mechanisms. We will

study an approach where loop transformations obfuscate the protected code, and

dynamically generated SMC provides an effective solution to allow decisions in

the transformed loops.

The idea that dynamically generated SMC has a blueprint that is used to

generate custom “stamped” SMC on the fly has also not been studied. We will

show that a graph algorithm such as depth-first search (DFS) based identification

of strongly-connected components (SCCs) and topological sorting can be imple-

mented by a SMC control-flow graph (CFG) representing the actual graph being

queried. The ideas allow for an optimization geared towards simplification of the

stack and are generalizable to largely any graph algorithm. The algorithms men-

tioned are those that make up an efficient linear Boolean 2-satisfiability (2-SAT)

instance solver [2].

As for CFG obfuscation, the hardest structure for most static analysis tools to

properly understand semantically is an irreducible loop (IL), which is, informally

speaking, a loop with multiple entries. Nesting of irreducible loops can cause

quadratic behavior where the loop nesting forest is constructed [22], and the only

resolution to structuring them into an abstract syntax tree (AST) involves intro-

duction of variables and conditional expressions [30]. Although almost linear time

algorithms exist for building loop nesting forests of irreducible loops by various

strategies which combine them, translation to the AST does not necessarily allow

for the same reductions as identification.

This study will take a look at specifically a case study where every control

flow construct, be it a conditional or loop, will be further embedded or converted

into an irreducible loop nest designed to cause quadratic behavior in identification.

These loops however will be largely fictitious by using opaque predicates allowing

the original looping behavior, or a simple single iteration. The 2-SAT solver will

be used to determine the exit conditions for all of the loops in question, and

given that it uses dynamic SMC, will be beyond the scope of any state-of-the-

art static analysis tools. The function which will be protected will be a security

critical function such as a white-box AES or RSA implementation. Performance

Control flow obfuscation with irreducible loopsand self-modifying code 619

measurements and a look at how powerful tools such as IDA Pro and Ghidra

disassemblers and decompilers will process them will be presented under Windows

and Linux on the modern x86 and x86-64 platforms.

2. Background

A Boolean satisfiability (SAT) formula consists of a set of n variables

X = {x1, ..., xn} and a set of clauses C = {C1, ..., Cn} where ∀i ∈ [1..n]Ci ⊆
(X ∪ {¬x, ∀x ∈ X}) using the variables in X or their logical negation. Two-SAT

(2-SAT) requires that ∀Ci ∈ C, |Ci| <= 2 restricting each clause to two vari-

ables. We consider the conjunctive normal form (CNF) which is a conjunction of

clauses. Disjunctive normal form (DNF) are trivially solved but the representation

has potentially O(2n) clauses. Unrestricted k-SAT where there are k variables

per clause is easily proven reducible to three variable per clause 3-SAT and the

3-SAT decision problem is non-deterministic polynomial-time (NP)-complete.

The 2-SAT decision problem asks whether a 2-SAT formula has a solution or

not. This is a non-deterministic logarithmic space (NL)-complete problem. NL is

a subset of polynomial-time (P), and it can be solved in linear time using a logical

implication graph and Tarjan’s strongly connected component (SCC) algorithm

[2] making it economical at runtime in a protection mechanism. If a solution can

be efficiently found with this method by using reverse topological sorted order, one

can efficiently determine it. A clause with zero variables indicates an unsatisfiable

equation. A clause with one variable has a forced value which can be replaced

in all other equations or considered to be a clause with the same variable twice.

Regardless it need not effect the implication graph or could be a trivial self-

loop. A clause with two distinct variables {p, q} yields two logical implications

(p ∨ q) ≡ (¬p =⇒ q) ∧ (¬q =⇒ p). An example formula, its implications and

visual depiction of its implication graph, SCCs and an identified solution is given

in Figure 1.

We consider a CFG G = (V,E, h) to be a directed graph (digraph) with V

being the set of vertices, E ⊆ {(x, y)∀x ∈ V,∀y ∈ V } being a set of ordered pairs of

predecessor and successor vertices, and a distinguished root node h which reaches

every node in V so that ∀v ∈ V, h
∗−→ v. Each vertex is associated with a sequence

of code. A vertex with a single out-edge is considered to be a sequence with its

successor node. A vertex with two out-edges is a Boolean conditional, otherwise

it contains more than two out-edges and is an n-way conditional. A DFS which is

the basis of the SCC algorithm, classifies edges in a digraph between tree edges,

620 G. Morse, M. Alqaradaghi and T. Kozsik

forward edges, cross edges and back edges based on their ancestor relationship

in the tree induced by the DFS, usually computed based on their pre-order and

post-order timestamps.

1

3

6

9

10

2

4

8

5

7

-8

2

5

4

-1

7

-3

6

1

-7

3

-4

-2

-5

8

-6

(a)

(x1 ∨ x4) ∧ (¬x2 ∨ x5) ∧ (x3 ∨ x7) ∧
(x2 ∨ ¬x5)∧(¬x8 ∨ ¬x2)∧ (x3 ∨ ¬x1) ∧
(x4 ∨ ¬x3)∧ (x5 ∨ ¬x4) ∧(¬x3 ∨ ¬x7)∧
(x6 ∨ x7) ∧ (x1 ∨ x7) ∧(¬x7 ∨ ¬x1)

≡
(¬x1 =⇒ x4) ∧ (¬x4 =⇒ x1) ∧
(x2 =⇒ x5) ∧ (¬x5 =⇒ ¬x2)∧
(¬x3 =⇒ x7) ∧ (¬x7 =⇒ x3) ∧
(¬x2 =⇒ ¬x5)∧ (x5 =⇒ x2) ∧
(x8 =⇒ ¬x2) ∧ (x2 =⇒ ¬x8) ∧
(¬x3 =⇒ ¬x1)∧ (x1 =⇒ x3) ∧
(¬x4 =⇒ ¬x3)∧ (x3 =⇒ x4) ∧
(¬x5 =⇒ ¬x4)∧ (x4 =⇒ x5) ∧
(x3 =⇒ ¬x7) ∧ (x7 =⇒ ¬x3) ∧
(¬x6 =⇒ x7) ∧ (¬x7 =⇒ x6) ∧
(¬x1 =⇒ x7) ∧ (¬x7 =⇒ x1) ∧
(x7 =⇒ ¬x1) ∧ (x1 =⇒ ¬x7)

(b)

Figure 1. 2-SAT implication graph with a highlighted solution (a) for

a satisfiable equation (b)

A loop hl ⟳ l is not defined as a cycle but involves a strongly connected region

and a back edge between a header hl and latch l. A loop nesting forest (LNF) of

a CFG is a forest whose trees represent the hierarchy of the loops nesting order.

A general formal characterization can be given based on strong connectivity and

dominance relationship [23]. A reducible CFG contains only reducible loops. For

reducible CFGs, the LNF is unique but this is not the case with irreducible LNF

which can have multiple representations based on the general LNF definition. We

will use the Havlak LNF [14] which is an LNF which is a representation that

Control flow obfuscation with irreducible loopsand self-modifying code 621

has a single header-node for each loop and is convenient for source and binary

translation given it is practically universal that the abstract syntax tree (AST) in

any given language will have a single header per loop and is efficiently computable

in near-linear time [26]. An irreducible or multi-entry loop cannot be directly

represented in the CFG of many languages such as Java or Python. An AST

is a tree representation of the abstract syntactic structure of a program written

in a formal language. For our purposes we focus on the control-flow elements of

such a tree e.g., C keywords do, while, for, if , switch, return and goto as well as

operators ? :, && and || .
The state machine model is the simplest way to represent any CFG as

an AST. It effectively flattens out the CFG by representing the state, or cur-

rent executing vertex as a variable. A loop containing an n-way conditional is

the only requirement as well as a variable with enough state space to uniquely

represent any vertex |V |. This simple solution also produces code that is often

very difficult to understand as it has done effectively no structuring with language

elements. For more background regarding CFGs and ASTs, they are used most

often in practice during the compilation process’ syntax translation and code

generation phases [1].

Structuring algorithms can also convert a CFG to an AST by maximizing

use of language elements for loops, n-way conditionals and Boolean conditionals

in some priority hierarchy. However, this is only possible in languages like C

which have labels and a goto statement when dealing with constructs such as

irreducible loops, among others. This is commonly done in tools like DCC [10] or

its later REC [24], IDA Pro and Ghidra decompilers as well as lesser known ones.

We looked specifically at the most state-of-the-art ones, Hex-Rays IDA Free 7.6,

a cloud-based x64 decompiler [15] and the NSA open-source Ghidra v9.2.4 [13].

Finally re-structuring is also possible, but not without code duplication [27]

or the introduction of state variables as were used in the DREAM decompiler

[31] [30], and can eliminate irreducible loops entirely by constructing a new CFG

with state variables and Boolean conditionals making use of those state variables.

However, given the entries into a set of nested irreducible loops may be numerous,

this can lead to a quadratic number of state variables and conditionals. Such code

however can be easier to understand, and easier for formal verification tools to

analyze as single-entry regions of a CFG require less complicated formal semantics.

Control-flow obfuscation methods have used different methods in the past.

A popular method is the Dynamic Dispatcher Model of Wang, et al. [28] and

Chow, et al. [9]. Another method which has similarity to our proposed method

622 G. Morse, M. Alqaradaghi and T. Kozsik

uses opaque predicates [20]. More recently an obfuscation method using control-

flow flattening was introduced [19] and another by hiding the control flow infor-

mation in the stack [3] which was further extended to use SMC [4]. There is also

a known method which obfuscates control flow at the function level [5]. Our con-

tribution is the use of dynamically generated SMC to generate opaque predicates,

and the use of irreducible loops to increase complexity.

3. SMC 2-SAT

Rather than considering the 2-SAT solving algorithm and graph separately,

we can integrate them so that the vertices and edges of the implication graph be-

come vertices and edges of a CFG. The code associated with each vertex is based

on the SCC algorithm and a reverse topological sort. Rather than going into too

much detail, we describe the transformation process as the pseudo-code is particu-

larly difficult to understand without assembly language or a SMC meta-language.

We outline a scheme which has been implemented in x86 and x86-64 assembly on

Windows and Linux. The normal execution stack is replaced by a stack repre-

senting the return address into the stack of nodes for the graph algorithm. When

a node starts processing, its own first instruction is changed to a return instruc-

tion. When a node completes processing, it marks an address to its topological

sorted solution check in the prior topological sort node code. For convenience

and to allow reuse, callback functions specified by lambda (anonymous) functions

can be used to enumerate edges. Another lambda callback can be used as each

solution variable is identified, to allow a data structure like a set to be used if

checking for unsatisfiability.

To make this scheme generalized for reusability, we consider two processes,

one for runtime initialization of the solver and the other for its execution as seen

in Figure 2.

Control flow obfuscation with irreducible loopsand self-modifying code 623

Assembly Language
 Source Blueprint (.asm/.S)

 Special markup in comments
 to tag needed offsets

Assembler listing (.lst)

Parse listing for
 byte code and offsets

Output C byte array and offset
 constants (.c/.cpp)

(a)

Allocate Read-Write-Execute (RWX)
Virtual Memory (VirtualAlloc/mmap)

Copy blueprint

Stamp blueprint with fixed data
 (e.g., relative offsets or data/function pointers)

Stamp blueprint with dynamic data

Execute SMC

Free Memory
 (VirtualFree/munmap) Restamp blueprint on SMC offsets

Reuse

(b)

Figure 2. Amethod for fast generation of a blueprint (a) and blueprint

stamping (b)

3.1. Generating 2-SAT formulae. A 2-SAT formula can be generated from

a solution set of Boolean variables which have been pre-assigned certain literals

from {T, F}. A procedure to do this merely needs to construct a tree of logical

implications based on the desired values of the variables, and the choices for

implications can be made randomly. Any remaining variables and their negations

are individual trees in the forest. These create a set of implications required

so that the solution of the formula yields the correct desired variable values.

The next stage can generate a set of any number of optional variables that are

not necessary and have a free choice of value, and which with their negations

are added as trees to the forest. Finally, implications can randomly be added to

the forest such that no loops are created which would imply unsatisfiability.

4. Converting (Cryptographic) Algorithms to CFG

The transformation can largely take the algorithm down to its description in

Boolean logic as the hardware would implement it. This lower-level description

624 G. Morse, M. Alqaradaghi and T. Kozsik

is more flexible though can result in a very large CFG given it does not benefit

from practical reductions like machine word sizes. Yet the model is flexible, so

abstractions of higher-level functions or machine word sizes can be reintroduced.

The fundamental operations will be generalizations of Boolean logic multiple input

combinators: conjunction (AND), disjunction (OR), exclusive disjunction (XOR)

and its complement (XNOR).

Definition 1.

AND(X) =
∧
x∈X

x, OR(X) =
∨
x∈X

x, XOR(X) =
⊕
x∈X

x, XNOR(X) = ¬
⊕
x∈X

x.

Such a multi-input representation can be readily decomposed into two-input

combinators requiring one less than the number of inputs, either sequentially or

in a tree for maximal parallelization. Although the complements of conjunction

and disjunction (NAND and NOR) are both sufficient on their own to cover all

Boolean logic, having functional completeness, to reduce the size of the graph and

make it more intuitive, such a set can be chosen. XNOR (or NAND or NOR) can

provide logical negation when applied to a single input. Now we can define basic

common operations that will be used in many algorithms.

The mutually exclusive selection (SEL) operation can be implemented as

a sum of products where X is a set of ordered pairs with the selector s and value

x such that one and only one pair can have a true selector.

Definition 2. SEL(X) =
⊕

s,x∈X

s ∧ x.

Notice in this context that XOR is replaceable by OR. Binary selection

is a special case represented by BSEL(s, x0, x1) = s ∧ x0 ⊕ ¬s ∧ x1 or X =

{(s, x0), (¬s, x1)}.
A table lookup is a mapping between a fixed sized m-bit input and n-bit

output as f({0, 1}m) → {0, 1}n. This can be decomposed into single-bit outputs

as f({0, 1}m) → {0, 1}. There are two generic representations in logic and using

logic synthesis to construct an optimal circuit is NP-hard based on the circuit

SAT problem. The first representation uses two exponentiated via bit-shifting as

2{0,1}
m

giving selectors which can be combined as ordered pairs with a correspond-

ing single-bit output of f({0, 1}m) and the selection operation used. Bit-shifting

is implemented by starting with a constant of 1 and for each bit of the argument,

computing conjunctions with the number and inverse of the bit and the number

and bit itself. Alternatively each possible input {0, 1}m can be turned into a cir-

cuit using AND and negations. The trade-off is between combinators and the

number of inputs e.g., nodes versus edges.

Control flow obfuscation with irreducible loopsand self-modifying code 625

Addition can be represented by sequentially chaining the basic equations

si = ai ⊕ bi ⊕ ci+1 and c0 = 0, ci+1 = ai ∧ bi ∨ ci ∧ (ai ⊕ bi). Subtraction terms its

carry as borrow and is not associative so ci+1 = ¬ai∧bi∨ci∧¬(ai⊕bi). Combining

these, we can choose dynamically between these two with a variable s indicating

subtraction, instead of using selection, we have ci+1 = (ai⊕s)∧bi∨ci∧(ai⊕bi⊕s).

In fact this simple bit of operations makes constructing many more compli-

cated algorithms straight-forward. A key advantage is that constant-time can be

maintained. This representation is particularly useful for measuring efficiency of

parallel implementations, as well as determining exact constants effectively algo-

rithmic complexity. One more technique of using reusable subgraphs to reduce the

graph size will be applied. The subgraphs have a single input edge representing

its activation condition, some fixed number associated with how many times its

execution is repeated, along with data input and output edges. This technique

can be expanded to allow for conditional execution at the cost of maintaining

constant-time.

4.1. AES/Rijndael. The Advanced Encryption Standard (AES) subset of Ri-

jndael is standardized with three bit sizes, and referred to as AES-128, AES-192

and AES-256 based on the bit size of the key. It consists of a key expansion step

which takes the key and generates a key schedule used in the rounds of encryption

and decryption. The encryption has four main steps of byte substitution, shifting

rows, mixing columns and adding the round key with the initial and final round

performing only some of these steps. As this is a symmetrical algorithm, decryp-

tion does the reverse. At the core of the security are substitution (S)-boxes used in

the substitution step that provides non-linearity using an invertible affine trans-

formation. This multiplicative inverse of the inverse of the affine transformation

is used for decryption.

The AES key expansion can be done using only XOR and table lookup oper-

ations. The encryption and decryption also only require XOR and table lookups,

but additionally the column mixing can be efficiently implemented using a selec-

tion operation involved in the “xtime” function as outlined in the original Rijndael

proposal [12]. For our graph, we used subgraphs to reuse S-box and inverse S-box

table lookups. Identifying the table lookups would at minimum require identifying

the bit-shifting circuit or DNF table lookup circuits as described above.

To strengthen the scheme against lookup table attacks, note that per our

decomposition to single bit outputs above, an arbitrary circuit can be formed.

Although the optimal one is NP-hard, one which introduces spurious additional

inputs with no effect on the output, along with finding a deeper circuit between

626 G. Morse, M. Alqaradaghi and T. Kozsik

the 2-level circuits from putting the equation in CNF and DNF forms is not as

hard. This would make the lookup tables transparent as they would not have

uniformity, nor the same timing characteristics nor the same number of inputs.

Common terms of different parts of these equations from different lookup tables

can be merged to further add complexity to analysis with first having to do

equality (XOR) checks on the inputs. Although there are many options in this

regard, there performance will likely be a performance penality.

4.2. RSA. Public-key encryption algorithms like Rivest-Shamir-Adleman (RSA)

cryptosystem and even the elliptical curve digitial signature algorithm (ECDSA)

rely on more computationally expensive operations like multliplication and so

efficiency becomes a very high practical concern. There are a number of pub-

lished techniques to reduce the number of operations. RSA relies on a secure

encoding such as Public Key Cryptography Standard (PKCS) for encryption/de-

cryption and its v1.5 for signatures with deterministic and probabilistic schemes

both defined. Computationally, RSA relies upon modular exponentiation. Mod-

ular exponentiation can be done most efficiently by using the exponentiation by

squaring method in O(Mn + Sn) where M and S are the complexity of mod-

ular multiplication and modular squaring respectively, and n is the bit size of

the exponent. The number of multiplications can be further reduced using pre-

computation and windowing. The most optimal method makes use of addition

chains, however no cryptographically useful algorithm is known to generate min-

imal chain, and only heuristics can be employed beyond a small bit size [11].

The multiplications themselves can be done with a divide-and-conquer algorithm

like Karatsuba multiplication (O(nlog2 3)) or Toom-Cook (O(nlogk 2k−1)) down to

a size where the constant coefficient of the algorithm makes traditional grade-

school multiplication (O(n2)) faster for n-bit integers. For very large bit-sized

integers, the Fast Fourier Transform (FFT)-based Schonhage-Strassen method

can be used in O(n log n log log n) [7]. As gradeschool multiplication requires

a sum of multiple inputs, an efficient implementation makes use of carry-save

adders constructed in a Wallace tree. Squaring operations can be optimized to

be twice as fast by using Karatsuba squaring and gradeschool squaring optimiza-

tions. Since modular multiplications are required to avoid exponential growth

of subcomputations, one can make use of the Montgomery multiplication (MM)

method which relies on Montgomery reductions (MR) and is only as complex as

multiplication with a larger constant.

To increase the parallelization of the algorithm, addition can be done in

a carry-free manner using a recoded binary signed digit (RBSD) encoding where

Control flow obfuscation with irreducible loopsand self-modifying code 627

only converting back to regular binary form requires a sequential operation [21].

There is a constant cost associated with the initial conversions and recoding which

must occur after each addition. There are also several techniques to different base

representations of the exponent to also reduce the cost of exponentiation including

non-adjacent form (NAF) and mutual opposite form (MOF) and their windowed

forms which reduce the hamming weight of the exponent. However, using such

techniques or sliding windows or even addition chains will gain performance at cost

of not having a constant-time implementation. The Montgomery ladder approach

can be employed to give constant-time, though compared to simple windowing,

it is slower.

A CFG generated without reuse of subgraph regions will quickly become too

large due to the exponential growth of multiplication as the bit size gets to realistic

cryptographic sizes, so reuse of squaring, multiplication, MR, MM is necessary.

For our implementation, we used Montgomery form, Montgomery and Karatsuba

multiplication and squaring and window sizes to minimize products. We made

use of subgraphs to reuse code for Karatsuba and Montgomery multiplication and

squaring as well as Montgomery reduction.

4.3. Experimental Results. For the experiments, the AES and RSA algo-

rithms were hand coded using the primitives we described to construct a large

circuit CFG. The specific optimization strategies we mentioned were designed to

keep the nodes and edges in the CFG to a minimum. We share sample code

for both table lookup methods in Figure 3, the pseudo-code for all the arith-

metic functions such as addition, negation, Montgomery multiplication, modular

exponentiation contains much more logic, and omitted for sake of brevity.

The results in Tables 1 and 2 (where Arch. is the processor architecture, C.

Ref is reference C implementation, Intrin. is intrinsics, Exec. is Executed, N. is

nodes, E. is Edges) are showing AES encryption with a fixed randomly generated

key, and the modular exponentiation of RSA decryption with a fixed randomly

generated private key. The mentioned places where subgraphing was used to

condense the graph size did provide useful space reductions and the results are

as expected. AES of all bit sizes although far slower than hardware and software

methods, performs potentially fast enough in certain scenarios. RSA on the other

hand has its worse than quadratic complexity showing that it is basically going to

be completely impractical both in terms of time and space after the 256-bit size.

Machine word-reductions could easily increase the potential of the representation

by order of 232 or 264 which could enable practical applications up to RSA-4096.

628 G. Morse, M. Alqaradaghi and T. Kozsik

#2∗2ˆn nodes , 2 p redece s so r s per node

def d e c o d e r s h i f t t o v i r t u a l (s h i f t , node , g , op) :

num = con s t a n t t o v i r t u a l (1)

i f len (s h i f t) == 0 : return num

for i in range (len (s h i f t)//BITSZ) :

num = mu l t i t o v i r t u a l ([num, n o t t o v i r t u a l (

s h i f t [i ∗BITSZ : (i +1)∗BITSZ] , node , g , op) ∗
(len (num)//BITSZ)] , and to v i r tua l , node , g , op) +

mu l t i t o v i r t u a l ([num, s h i f t [i ∗BITSZ : (i +1)∗BITSZ] ∗
(len (num)//BITSZ)] , and to v i r tua l , node , g , op)

return num

#2ˆn nodes , n predece s so r s per node

def d e c od e r t o v i r t u a l (s h i f t , node , g , op) :

return [x for y in [cmp z e r o t o v i r t ua l (mu l t i t o v i r t u a l (

[c o n s t a n t t o v i r t u a l (i) , s h i f t] , x o r t o v i r t u a l ,

node , g , op) , False , node , g , op)

for i in range (1 << ((len (s h i f t)//BITSZ)))] for x in y]

Figure 3. Python code representing two methods of virtualized trans-

lation to CFG for one-hot encoding, the primary operation of ta-

ble lookup functionality. Here BITSZ=1 for typical single bit

Boolean representation, BITSZ=2 for positive and negative bit rep-

resentations as separate inputs/outputs, multi to virtual streams

multiple bits to a single bit operation function, not to virtual ,

and to virtual , —xor to virtual— are logical NOT, AND and

XOR operations, constant to virtual converts a numeric constant

to its bit sequence using logical operations, cmp zero to virtual

does a comparison with zero using a multiple input XOR, node rep-

resents the next node counter, shift is a bit vector representing the

shift distance, g is an adjacency list of the CFG and op is a mapping

for node v where v → o, o ∈ {NOT,AND,OR,XOR or XNOR}

Control flow obfuscation with irreducible loopsand self-modifying code 629

AES Arch. C. Ref. Intrin. CFG Nodes Edges Exec. N Exec. E

128
x86 61µs 5µs 0.58s

51127 222683 134455 386203
x86-64 49µs 3µs 0.65s

192
x86 72µs 5µs 0.74s

61364 267320 161489 463381
x86-64 58µs 4µs 0.82s

256
x86 83µs 6µs 0.91s

71568 311924 188438 541018
x86-64 67µs 4µs 0.89s

Table 1. AES (1000 operations in succession)

RSA Arch. C gmp CFG Nodes Edges Exec. N Exec. E

32
x86 851ms 4.90s

8882 16591 686447 1321378
x86-64 707ms 5.03s

64
x86 2.207ms 32.12s

15743 29925 4538657 8706840
x86-64 1.015ms 33.06s

128
x86 9.141ms 196.69s

34604 67583 27372136 52186545
x86-64 7.640ms 201.02s

256
x86 9.141ms 1171.36s

88121 180473 167967539 320612875
x86-64 7.640ms 1228.89s

Table 2. RSA/modular exponentiation (1000 operations in succession)

5. Irreducible loops

Irreducible loops are less intuitive than reducible loops and their rarity in

C, a language whose syntax allows them is exceedingly rare in real-world appli-

cations [25]. When a process is being repeated, it is natural to start from its

beginning, rather than conditionally start somewhere in the middle. Furthermore

by embedding a set of conditions, static analysis will be unable to proceed with

any reasonable guarantees per Rice’s theorem as decidability prevents a static an-

alyzer from having a set of conditions to even continuing scanning self-modifying

code or what could be unreachable code [18]. There are some details such as the

permissions of the code segment being loaded with read-only permission giving

possible guarantees that no modifications occur to the code, though this is operat-

ing system dependent. Regardless, potentially unreachable code could be crafted

such that it is not intended to be executed and deliberately hostile to static anal-

ysis, attempting to cause a static analyzer to run out of memory or get consumed

630 G. Morse, M. Alqaradaghi and T. Kozsik

by gratuitious computations or have invalid, illegal or other instructions that are

not representable in high-level languages.

In Figure 4, a simple example that highlights the different LNF definitions

[23] is shown with its jungle (the depth-first spanning tree and original edges)

and LNF. We compiled C++ code representing this with both an unstructured

or hybrid structured representation versus a structured goto-free representation.

The results on decompilation are given in Table 3. As our abstraction used C++

lambda functions for convenience and realism, some function pointer safety checks

caused additional unstructured code.

entry

u v

w x

exit

(a)

1 [2,13]

2 [3,12]

3 [6,7]

4 [4,11]

5 [5,10]

6 [8,9]

(b)

1 [-] 2 [I]
 {3: {1}} 6 [-]

4 [I]
 {3: {1}}

5 [I]
 {3: {1}}

3 [-]

(c)

Figure 4. Simple Irreducible Loop CFG (a) with its Jungle (b) and

Havlak LNF (c) (entry=1, u=2, v=3, w=4, x=5, exit=6)

Tool Style gotos Loops B. Conds. S. Conds. S. gotos

IDA Free Unstructured C 6 2 11 6 3

IDA Free Structured C 7 1 10 5 4

Ghidra Unstructured C 8 2 11 6 5

Ghidra Structured C 7 2 13 6 3

Table 3. Comparison of Irreducible Loop output in IDA Free and

Ghidra (B. is Boolean, S. is safety and Cond. is conditional)

To appreciate the quadratic complexity of representing irreducible loops with

structured programing, it is interesting to look at the worst case with a complete

digraph Kn = (VKn
, EKn

), |EKn
| = n2 − n when n > 2 which regardless of root

Control flow obfuscation with irreducible loopsand self-modifying code 631

node choice is always a CFG. We can optionally assume that only the root node

is connected to a special distinguished return or exit node if prefering to avoid

the outermost infinite loop. We can augment with or ignore introduction of self-

loops as they are trivial cases, though notably they induce post-test loops. In the

Havlak LNF, there will be a single branch tree of loops with n− 1 loop headers,

and only the last node traversed in the DFS will be a non-header or self-loop.

The entry node will head a reducible loop as no node can enter it which is not

contained within it. Therefore a CFG can have a maximum of n − 2 irreducible

loops and requiring a triangular number sequence-based amount of multi-entry

edges (MEE) or gotos to be represented without CFG modification.

Definition 3. |MEE(Kn)| =
∑

i=0..n−2

i = (n−1)(n−2)
2

As Kn has a quadratic number of edges, we can also reduce the graph by

removing extra back edges whose successor is not the inner-most non-header node,

giving a DFS with n−1 tree edges, n−1 back edges plus all the multi-entry edges

so that a graphMn = (VMn
, EMn

), VMn
= vi∀i ∈ [1..n] will have maximized multi-

entry edges while minimizing all others. We can formalize such a construction.

Definition 4. EMn
= {(vi, vi+1)∀i ∈ [1..n − 1]} ∪ {(vn, vi)∀i ∈ [1..n − 1]} ∪

{(vi, vj)∀i ∈ [1..n− 2]∀j ∈ [i+ 2..n]},
|EMn

| = (n−1)(n−2)
2 + 2(n− 1) = (n−1)(n+2)

2 , |MEE(Mn)| = |MEE(Kn)|

The DCC and its later REC decompiler algorithm uses the derived sequences

of graphs based on intervals [10] or parenthesis theory. It does not align with this

analysis perfectly as it makes practical assumptions that loop headers and/or

the final conditional in a loop, termed a latch have Boolean conditionals which

makes it not properly generalized. However, some modifications can be made to

correct this oversight by node-splitting into a Boolean conditional and remaining

conditional without code duplication or using n-way conditionals and gotos. Its

results will therefore most accurately reflect the initial CFG.

Removing irreducible loops via the node splitting technique [27] eliminates

the multiple entries into a loop by effectively “splitting” which actually involves

duplication of code. However, by processing a set of two other reduction rules in

a priority order, it attempts to minimize the number of node splits. However this

optimization will still require a quadratic amount of code duplication for each

multi-entry edge where the base reduction cases of a single node and two-nodes

can never have an irreducible loop.

The DREAM technique handles multiple entry and multiple exit regions by

introducing state variables and related conditions. Every entry into a loop via

632 G. Morse, M. Alqaradaghi and T. Kozsik

other than its header node requires a variable and conditionals for every node

on a path between the loop header and the given entry node. The number of

integer variables introduced is the number of irreducible loops n−2. The number

of conditions (and variables if Booleans rather than integers were used) however

will be based on the number of multi-entry edges. Although conditions can be

combined into n− 2 compound conditions, their presence is nevertheless required

and compound conditions if based on short-circuit evaluation are still a series of

Boolean conditionals.

So the idea to use irreducible loops, to add edges at the cost of quadratic

behavior for eliminating gotos presents a new challenge to static analysis. We will

refer to two schemes, the first a static compile-time scheme, and the second which

is merely proposed would be dynamic and run-time based. Consider a simple

sequence of statements. The minimal edges required to induce an irreducible

loop is 2 edges, while transformation to a simulated loop can also be done as

shown in Figure 5. Creating a loop requires that the first node is an empty

injected node such that it contains only a condition, so it requires one node, an

increase of three edges and SMC or a Boolean state variable. Notice that the

successors and any condition of the second node are transfered to the first node.

A
B

A

B

A

B

A

B

A;

B;

(a)

i f (f a l s eCond i t i on1)

goto l abe lB ;

. . .

do {
A;

labe lB : B;

} while (f a l s eCond i t i on2) ;

(b)

i f (f a l s eCond i t i on1)

goto l abe lB ;

. . .

while (trueThenFalse) {
A;

labe lB : B;

}

(c)

Figure 5. Statement block (a) and with minimal edges to induce an

IL (b) or with a simulated loop (c)

Control flow obfuscation with irreducible loopsand self-modifying code 633

c

A

B

c

A

B

c

A

B

i f (c) A;

B;

(a)

i f (! c) : goto l abe lB ;

do {
A;

labe lB : B;

} while (f a l s eCond i t i on1) ;

(b)

i f (f a l s eCond i t i on1)

goto labe lA ;

. . .

while (c &&

trueThenFalse){
labe lA : A;

}
B;

(c)

Figure 6. One-sided conditional (a) with minimal edges to induce an

IL (b) or with an extra edge (c)

Alternatively we consider a conditional and its minimal edges to induce an

irreducible loop in Figure 6. Inducing irreducible loops on reducible loops is

trivial as it only requires arbitrary edges from nodes outside the loop that are not

reached from nodes in the loop to be added. Creating transformation primitives

for two-way and n-way conditionals is straight-forward from simply extending

this approach. Any false or true conditions are thus determined from separate

outputs of the 2-SAT solver. Any conditions which change upon execution either

use SMC or a Boolean state variable which is negated.

For our proposed dynamic scheme, a dependency ordering of a constant-

time CFG can be used with multiple sets of Boolean conditions, which ensures

that regardless of the execution path actually taken at runtime, at termination,

all dependencies have executed one or more times and in proper order. The

conditions should satisfy properties which limits a maximum duplicate execution

of any vertex in the CFG. It should also tie the execution order of these conditions

to the input to the CFG.

634 G. Morse, M. Alqaradaghi and T. Kozsik

5.1. Security. The security goals of obfuscation are to increase the cost of an at-

tacker trying to reverse engineer the code, whether to understand it, to bypass

certain protection mechanisms or to extract security information. The attack

cost is reduced when an attacker uses automated tools, and unsurprisingly most

commonly obfuscation schemes are considered broken if they are suspectible to

such tools as it indicates complete de-obfuscation knowledge. Manual attacks

are much harder to prevent, but they are much more expensive as the attacker

must spend significant time and energy to do binary code analysis and reverse

engineering. The proposed scheme of using irreducible loops makes manual anal-

ysis difficult as binary code or decompiled representations become complex to

analyze. Furthermore algorithms reprsented as CFGs are very hard to reverse

engineer, as hard as Boolean circuit identification. The concepts presented are

merely an example. A secure customization of a well known cryptographic algo-

rithm would increase attack costs. Changing the SMC 2-SAT method for another

constant Boolean conditions generator is possible. The irreducible loop genera-

tion can also be done in a non-deterministic or deterministic way with all sorts

of various alternative patterns possible such as using n-way conditionals for loop

headers or loop latch nodes.

As far as cryptographic indistinguishability is concerned, our proposed obfus-

cation scheme is indistinguishable from the underlying algorithm from a practical

standpoint though not a theoretical one [8]. But the theoretical constructs are so

impractical at this point, it is considered to remain as an open problem [29].

Both schemes are practically resistant to static analysis, as the presence of

dynamic SMC makes a static analyzer unable to safely analyze past the point

that it is detected, and the presence of irreducible loops makes a static analyzer

unable to provide a simple representation of the original code. State-of-the-art

tools do not perform a general enough analysis and are mostly geared towards

non-obfuscated compiler-generated code.

The proposed dynamic scheme would increase resistance to differential fault

analysis (DFA) as a fault would need to be generated at different times based on

different input. However, a fault on the final execution of a vertex in the CFG

is still an issue. It is resistant to differential computation analysis (DCA) and its

subset differential power analysis (DPA) as the execution order changes based on

the input.

To consider the resilience or success rate of the obfuscation scheme, we use

the framework of Banescu, et al [6]. Namely that based computational power and

time of an attacker, the difficulty in getting closer to the original CFG by a cer-

tain threshold, is greater than some overall amount of time deemed acceptable in

Control flow obfuscation with irreducible loopsand self-modifying code 635

a given context. The authors specifically note that opaque predicates have only

been defeated by automated tools in simple contrived scenarios. For static analy-

sis attacks, the time would be based on the hardness of symbolically executing the

dynamically generated SMC to obtain the predicates, which is beyond the capa-

bilities of existing tools. In the dynamic scheme, however, the repeated operations

would require exponential time without proving these operations as repeated and

removing them to reduce it to the static scheme. Simple dynamic analysis would

not provide a sufficient proof though it could have statistical success.

6. Conclusion

Although software development practices have moved away from SMC and

irreducible loops, they continue to have importance to obfuscation and resistance

against static analysis. In the context of SMC, there is little agreement over simple

definitions such as loops or recursive code. There are also questions surrounding

its time and Kolmogorov complexity.

We have proposed a dynamic scheme using a sequence of generated 2-SAT

formulae, a CFG with irreducible loops and an execution path which changes

based on input with controlled redundancy based on dependency analysis. This

could provide a basis for even more sophisticated obfuscation.

De-obfuscation techniques will continue to get stronger against complex vir-

tualization schemes. Inevitably, the power of dynamic SMC would ensure more

advanced capabilities be developed in static analysis frameworks. Currently, they

largely do not consider it, making it one very open practical technique which

causes theoretical problems that have not yet received attention. In the future, it

is hoped that static analysis tools have better methods for reasoning about SMC

and a way to choose the optimal reduction strategy from an irreducible CFG to

a reducible one.

References

[1] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques,

and Tools (2nd Edition), Addison Wesley, 2006.

[2] B. Aspvall, M. F. Plass and R. E. Tarjan, A linear-time algorithm for testing the truth

of certain quantified boolean formulas, Information Processing Letters 8 (1979), 121–123.

[3] V. Balachandran and S. Emmanuel, Software code obfuscation by hiding control flow

information in stack, In: 2011 IEEE International Workshop on Information Forensics and
Security, 2011, 1–6.

636 G. Morse, M. Alqaradaghi and T. Kozsik

[4] V. Balachandran and S. Emmanuel, Potent and stealthy control flow obfuscation by stack
based self-modifying code, IEEE Transactions on Information Forensics and Security 8

(2013), 669–681.

[5] V. Balachandran, N. W. Keong and S. Emmanuel, Function level control flow obfusca-

tion for software security, In: 2014 Eighth International Conference on Complex, Intelligent

and Software Intensive Systems, 2014, 133–140.

[6] S. Banescu, M. Ochoa and A. Pretschner, A framework for measuring software obfusca-
tion resilience against automated attacks, In: 2015 IEEE/ACM 1st International Workshop

on Software Protection, 2015, 45–51.

[7] D. J. Bernstein, Multidigit multiplication for mathematicians, 2001,

https://cr.yp.to/papers/m3.pdf.

[8] L. Buttyán and M. Horváth, The birth of cryptographic obfuscation – A survey, IACR

Cryptol. ePrint Arch. (2018), https://eprint.iacr.org/2015/412.pdf.

[9] S. Chow, Y. Gu, H. Johnson and V. A. Zakharov, An approach to the obfuscation of
control-flow of sequential computer programs, Information Security (2001), 144–155.

[10] C. Cifuentes, A structuring algorithm for decompilation, In: XIX Conferencia Lati-
noamericana de Inform’atica, 1993, 267–276.

[11] N. M. Clift, Calculating optimal addition chains, Computing 91 (2011), 265–284.

[12] J. Daemen and V. Rijmen, The Rijndael Block Cipher – AES Proposal: Rijndael, 1999.

[13] Ghidra 9.2.4, https://ghidra-sre.org/.

[14] P. Havlak, Nesting of reducible and irreducible loops, ACM Trans. Program. Lang. Syst.

19 4 (1997), 557–567.

[15] Hex Rays - IDA Free 7.6, https://hex-rays.com/ida-free/.

[16] A. Kalysch, J. Götzfried and T. Müller, VMAttack: Deobfuscating virtualiza-

tion-based packed binaries, In: Proceedings of the 12th International Conference on Avail-
ability, Reliability and Security, 2017, 1–10.

[17] J. Karthik, P. P. Amritha and M. Sethumadhavan, Video Game DRM: Analysis and

paradigm solution, In: 11th International Conference on Computing, Communication and

Networking Technologies (ICCCNT), 2020, 1–4.

[18] W. Landi, Undecidability of static analysis, ACM Lett. Program. Lang. Syst. 1 (1992),

323–337.

[19] T. László and Á. Kiss, Obfuscating C++ programs via control flow flattening, Annales
Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Compu-

tatorica 30 (2009), 3–19.

[20] A. Majumdar and C. Thomborson, Manufacturing opaque predicates in distributed sys-

tems for code obfuscation, In: Proceedings of the 29th Australasian Computer Science

Conference, 2006, 187–196.

[21] B. Parhami, Carry-free addition of recoded binary signed-digit numbers, IEEE Transac-
tions on Computers 137 (1988), 1470–1476.

[22] G. Ramalingam, Identifying loops in almost linear time, ACM Trans. Program. Lang.
Syst. 21 (1999), 175–188.

[23] G. Ramalingam, On loops, dominators, and dominance frontier, In: Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,

2000, 233–241.

[24] REC Studio 4 - Reverse Engineering Compiler,
http://www.backerstreet.com/rec/rec.htm.

Control flow obfuscation with irreducible loopsand self-modifying code 637

[25] J. Stanier and D. Watson, A study of irreducibility in C programs, Software: Practice
and Experience 42 (2012), 117–130.

[26] W. Tao, M. Jian, Z. Wei and C. Yu, A new algorithm for identifying loops in decompi-
lation, Static Analysis (2007), 170–183.

[27] S. Unger and F. Mueller, Handling irreducible loops: optimized node splitting versus

DJ-graphs, ACM Trans. Program. Lang. Syst. 24 (2002), 299–333.

[28] C. Wang, J. Davidson, J. Hill and J. Knight, Protection of software-based survivability

mechanisms, In: International Conference on Dependable Systems and Networks, 2001,

193–202.

[29] H. Xu, Y. Zhou, Y. Kang and M. R. Lyu, On secure and usable program obfuscation: A
survey, arXiv:1710.01139 (2017), https://arxiv.org/abs/1710.01139.

[30] K. Yakdan, S. Dechand, E. Gerhards-Padilla andM. Smith, Helping Johnny to analyze
malware: A usability-optimized decompiler and malware analysis user study, In: IEEE

Symposium on Security and Privacy (SP), 2016, 158–177.

[31] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla and M. Smith, No more gotos: De-

compilation using pattern-independent control-flow structuring and semantic-preserving
transformations, In: 22nd Annual Network and Distributed System Security Symposium,

2015, 1–15.

GREGORY MORSE, MIDYA ALQARADAGHI, TAMÁS KOZSIK

EÖTVÖS LORÁND TUDOMÁNYEGYETEM / UNIVERSITY (ELTE)

DEPARTMENT OF PROGRAMMING LANGUAGES AND COMPILERS,

BUDAPEST, HUNGARY

E-mail: gregory.morse@live.com

E-mail: alqaradaghi.midya@inf.elte.hu

E-mail: kto@elte.hu

