
Publ. Math. Debrecen

Supplementum 100 (2022), 583–595

DOI: 10.5486/PMD.2022.Suppl.3

A provable M-of-N signature scheme based on the BDHI-type
assumption in the random oracle model

By Mariusz Jurkiewicz

Abstract. We describe a new group-based M-of-N multisignature scheme (i.e.,

a protocol which allows a group of signers to produce joint signature on a common

message), based on an asymmetric pairing of Type 3. The idea of the scheme is such

that there are arbitrary number of signing parties with independent keys that sign the

same message. Unlike the regular digital signature schemes, the signing algorithm is split

into two separated stages, namely making pre-signatures and generating final aggregate

signature. The security analysis is conducted in the euf-cma model, where the security

of the scheme is reduced to the computational hardness of solving the bilinear Diffie–

Hellman inversion problem. The reduction is made in the random oracle model.

1. Introduction

In this paper we propose and consider a new multisignature scheme. Mul-

tisignatures [7] compress signatures made by a group of different signers (each

possessing its own private/public key pair) on a common message into a single

compact, joint signature. Verification of the validity of a purported signature on

a given message is able to be conducted via the set of public keys of all sign-

ers. A standard signature scheme can be easily transformed into a multisignature

scheme by signing separately a given message and then concatenating all individ-

ual signatures. This approach has two fundamental weaknesses, namely both the

size of the multisignature and a number of launches of a verification algorithm in

these cases grow linearly with the number of signers.

Mathematics Subject Classification: 94A60, 94A62, 68Q25.
Key words and phrases: M-of-N multisig. and random-oracle model and bilinear Diffie–Hellman

inversion problem.



584 M. Jurkiewicz

So far, the most practical provably secure multisignature scheme that does

not impose any key setup or PKI requirements has been proposed by Bellare and

Neven [2] and is based on the Schnorr signature scheme [12]. The improvement

of this scheme in terms of allowing key aggregation under the Discrete Logarithm

assumption in the plain public-key model has been given by Maxwell, Polesta,

Seurin and Wuille in [8]. In fact, there is a number of proposals [13], [8], [4]

for multisignature schemes that are based on Schnorr signatures. The Schnorr

signature scheme uses a cyclic group G of prime order p, a generator g of G and

a hash function H. A secret/public key pair is a pair (x,X) ∈ Fp × G, where

X = gx. To sign a message m, the signer picks r
$← F∗

p, computes a nonce R = gr,

c = H(X,R,m), and s = r+ cx. The signature is the pair (R, s), and its validity

can be checked by verifying whether gs = RXc. The naive way to design a multi-

signature scheme fully compatible with Schnorr signatures, is a good example of

constructions that cause vulnerability to a rogue-key attack (see for example [10],

[9]) where a corrupted signer sets public keys of the other signers and sets its

public key, that allows him to produce signatures by himself.

As opposed to the Schnorr-based approach, we propose a construction based

on Type-3 pairings, which is dedicated to multisignatures with arbitrary number

of signing parties. Although, for the reason of this paper, pairings are treated in

a completely abstract fashion, they ought to be viewed as being actually defined

over E(Fqn)[p]×E(Fqnk)[p]→ Fqnk [p]. The main weakness of our proposal is that

the length of the signature grows linearly with the number of signers. On the other

hand, we were able do obtain full protection against rogue-key attacks, and that

signers are only required to have a public key, but do not have to prove knowledge

of the private key corresponding to their public key to some certification authority

or to other signers before engaging the protocol.

Multi-signatures have many potential applications, but recently they gained

popularity for their use in cryptocurrencies [8], [11] in order to save precious

block space for multi-input transactions, or as an additional layer of security

to protect user wallets. It is well known that traditional bitcoin transactions are

conducted between a pair sender/beneficiary and their addresses are derived from

the underlying public keys. In January 2012 with Bitcoin Improvement Proposal

16 (BIP-16) it was introduced the new feature, where the beneficiary of a bitcoin

transaction is designated as the hash of a script, instead of the owner of a public

key. This form of presenting the addresses is called pay-to-script hash (P2SH)

addresses and is created from a transaction script, which defines who can spend

a transaction output. Currently, the most common implementation of the P2SH

function is the multisignature address script. In this case, the underlying script



A provable M-of-N signature scheme based on the BDHI-type . . . 585

requires more than one signature to prove ownership and thus spend funds (for

more details, see [1]). In this paper we propose a bitcoin multisignature, where

there are required M signatures from N available keys. This is the most general

variant, known as an M-of-N schemes. It can be used in many common cases, for

example, if the funds are joint marital property, and both spouses must accept

all the transactions.

The most important and delicate matter for the new cryptographical schemes

is to justify that all of the needed security requirements hold. In the modern

cryptography this analysis is carried out by doing research within a proper security

model, which is euf-cma for the presented scheme. The security proof is conducted

in the random oracle model, where the hash function H1 is modeled as a random

oracle.

2. Preliminaries

2.1. Bilinear Diffie–Hellman Inversion Problems. Assume that G1,G2 and

GT are three multiplicative cyclic groups of prime order p. Let us remind that

if G1 ̸= G2 and no efficiently computable isomorphism is known between G1

and G2, in either direction, then a map ê : G1 × G2 → GT is called a pairing of

Type 3 if it satisfies the following properties:

bilinearity,: i.e., for all g1 ∈ G1, g2 ∈ G2 and α, β ∈ Fp we have

ê
(
gα1 , g

β
2

)
= ê (g1, g2)

αβ
;

non-degeneracy,: i.e.,

(i) if for all g1 ∈ G1 we have ê(g1, g2) = 1GT
then it is equivalent to g2 =

1G2
;

(ii) if for all g2 ∈ G2 we have ê(g1, g2) = 1GT
then it is equivalent to g1 =

1G1
.

Note that for g1 ̸= 1G1
and g2 ̸= 1G2

we have ê(g1, g2) ̸= 1GT
.

In [3], Boneh et al. defines ℓ-bilinear Diffie–Hellman inversion problem

(ℓ-BDHI) for Type-1 pairings. We present below its counterpart for Type-3 pair-

ings, which is denoted by ℓ-BDHI3. To this end, suppose that g1, g2 are generators

of G1 and G2, respectively and let α
$← F∗

p,

ℓ-BDHI : given {gi, gαi , . . . , g
(αℓ)
i }, i = 1, 2, compute ê(g1, g2)

1
α .



586 M. Jurkiewicz

In [3] and [6] authors justify that ℓ-BDHI is a computational hard problem. By

analogy, the same reasoning can be applied to more general case where Type-3

pairing is taken instead of Type-1; this means that the problem ℓ-BDHI3 is also

computationally hard.

Besides ℓ-BDHI3, we also define its extended variant called (ℓ, 1)-BDHI3.

Although this problem is essentially equivalent to ℓ-BDHI3 in terms of compu-

tational difficulty, it plays an important technical role and is useful in gaining

clarity of the security analysis. Suppose that g1, g2 are generators of G1 and G2,

respectively and let α, β
$← F∗

p, then (ℓ, 1)-BDHI3 is as follows

(ℓ, 1)-BDHI3 : given {gi, gαi , . . . , g
(αℓ)
i ; gβ2 , g

βα
2 , . . . , g

(βαℓ)
2 }, i = 1, 2,

compute ê(g1, g2)
β
α .

The relation between ℓ-BDHI3 and (ℓ, 1)-BDHI3 is given below.

Lemma 1. If A is a (ℓ, 1)-BDHI3-adversary, then there exists a ℓ-BDHI3-

adversary B that runs in essentially the same time as A, furthermore

Adv(ℓ,1)-BDHI3
n (A) ≤ Advℓ-BDHI3

n (B).

Proof. The adversary B is given gi, g
α
i , . . . , g

(αℓ)
i on input. It chooses β

$←

F∗
p, uniformly at random and computes

(
gα

j

2

)β

= gβα
j

2 , for i = 1, 2 and j =

0, . . . , ℓ. Next, B sends
{
gα

j

i ; gβα
j

2

}ℓ

j=0
to A, and obtains ẽ = ê(g1, g2)

β
α on

output. Since B knows β it computes ẽ
1
β = ê(g1, g2)

1
α , which is desired value. This

means that breaking ℓ-BDHI3 is at least as hard as breaking (ℓ, 1)-BDHI3. □

2.2. Existentially Unforgeable Signature Schemes. The notion of signa-

ture schemes which are existentially unforgeable under a chosen-message attack

(euf-cma) was introduced in [5]. To remind the formal definition of euf-cma se-

curity let Π = (G ,Gen,Sign,Vrfy) be a signature scheme , A a PPT-adversary

and n the value of a security parameter. Assume that the system parameters

params ← G (1n) have been generated and sent to A. Consider the experiment

Expeuf-cma
A,Π :

(1) Generate (sk, pk)← Gen(params);

(2) The adversaryA is given pk and access to the signing oracle Signsk(·), request-
ing signatures on as many messages as it like (it is denoted by ASignsk(·)(pk)).

Let{mi}qi=1 be the set of queries that A has asked the oracle;



A provable M-of-N signature scheme based on the BDHI-type . . . 587

(3) Eventually (m∗, σ∗)← ASignsk(·)(pk);

(4) A succeeds if Vrfypk(m
∗, σ∗) = 1 ∧m∗ ̸∈ {mi}qi=1. In this case the output of

the experiment is defined to be 1. Otherwise, the experiment outputs 0.

We refer to such an adversary as an euf-cma-adversary. The advantage of A in

attacking the scheme Π is defined as

Adveuf-cma
Π,n (A) = Pr[Expeuf-cma

A,Π (1n) = 1].

A signature scheme is secure if no efficient adversary can succeed in the above

game with non-negligible probability.

Definition 2. A signature scheme Π = (G ,Gen,Sign,Vrfy), is called to be

existentially unforgeable under a chosen-message attack if for all efficient prob-

abilistic, polynomial-time adversaries A, there is a negligible function negl such

that

Adveuf-cma
Π,n (A) ≤ negl(n).

Signature schemes, which are existentially unforgeable under a chosen-message

attack are often called euf-cma secure.

3. Construction of the scheme

In this section we present the construction of our scheme MulSig. The

idea is such that there are M signers, having independent keys (sk1, pk1), . . . ,

(skM , pkM ), and signing the same message. The crucial matter is that the signing

algorithm consists of two separated stages, making pre-signatures and generating

final aggregate signature. It must be highlighted that the second stage is con-

ducted by the system, and consequently none of the signers has already control

of signature generation process. In other words, a set of all pre-signatures be-

came a seed for an aggregate signature. The details are given in the following

construction of the scheme (see also Figure 1).

Parameters setup: (G ) On input 1n, the setup algorithm generates parame-

ters params := (G1,G2,GT , p, gi, ê,Hashes), where G1,G2 and GT are three

multiplicative cyclic groups of prime order p, ê : G1 ×G2 → GT is a pairing

of Type 3 and ⟨gi⟩ = Gi with i = 1, 2. According to the definition, G1 ̸= G2

and no efficiently computable isomorphism is known between G1 and G2,

in either direction. The component Hashes consists of three hash functions

H1 : {0, 1}∗ → F∗
p, H2 : GT ×GT → {0, 1}n, H3 : {0, 1}∗ → F∗

p × F∗
p.



588 M. Jurkiewicz

Parameters setup: (G ) On input 1n, the setup algorithm generates parame-

ters params := (G1,G2,GT , p, gi, ê,Hashes), where G1,G2 and GT are three

multiplicative cyclic groups of prime order p, ê : G1 ×G2 → GT is a pairing

of Type 3 and ⟨gi⟩ = Gi with i = 1, 2. According to the definition, G1 ̸= G2

and no efficiently computable isomorphism is known between G1 and G2,

in either direction. The component Hashes consists of three hash functions

H1 : {0, 1}∗ → F∗
p, H2 : GT ×GT → {0, 1}n, H3 : {0, 1}∗ → F∗

p × F∗
p.

Key generation: (Gen) Each signer generates a pair of random secret keys

s, r
$← F∗

p and computes a corresponding public key pk = (pk1, pk2), where

pk1 ← gs1, pk2 ← gr2.

First signing round: (Sign.Round1) Each signer separately performs the al-

gorithm Sign.Round1, which takes on input a message m and the secret key

sk = (s, r). It computes and outputs the following value t← g
(s+H1(m))−1·r
2 .

Second signing round: (Sign.Round2) This algorithm derives an aggregate

signature. Upon reception of the first-round output {ti}i∈[M ] it chooses a uni-

formly random nonce nonce
$← {0, 1}n, takes the message m and performs

the following computations

R←
M∏
i=1

pk2,i, ρ← H3(nonce∥m),

σi ← tρi , i ∈ [M ], σM+1 ← nonce ⊕H2 (ê(g1, R)ρ)

It outputs σ =
(
{σi}i∈[M ], σM+1

)
.

Verification: (Vrfy) Given a set of associated public keys {pki}i∈[M ], a message

m, and a (purported) signature σ, it makes pre-computations

ξi ← ê
(
pk1,i · g

H1(m)
1 , σi

)
, i ∈ [M ],

π ←
M∏
i=1

ξi, η ← H2(π)⊕ σM+1, τ ← H3(η∥m).

The verifier accepts the signature if π = ê
(
g1,

∏M
i=1 pk2,i

)τ

.



A provable M-of-N signature scheme based on the BDHI-type . . . 589

G (1n)

G1,G2,GT , p ∈ P, g1, g2, ê
Select three hash functions

Hashes = {H1, H2, H3}
H1 : {0, 1}∗ → F∗

p,

H2 : GT → {0, 1}n

H3 : {0, 1}∗ → F∗
p

params := (G1,G2,GT , p, gi, ê,Hashes)

return params

Gen(1n, params)

s, r
$← F∗

p

pk1 ← gs1, pk2 ← gr2

sk = (s, r), pk = (pk1, pk2)

return (sk, pk)

Sign.Round1sk(m)

t← g
1

s+H1(m)
·r

2

return t

Sign.Round2
(
m, {ti}i∈[M ], {pki}i∈[M ]

)
R←

M∏
i=1

pki,2

nonce
$← {0, 1}n

ρ← H3(nonce∥m)

σi ← tρi , i ∈ [M ]

σM+1 ← nonce ⊕H2 (ê(g1, R)ρ)

return σ =
(
{σi}i∈[M ], σM+1

)
Vrfy{pk}(m, σ)

ξi ← ê
(
pki,1 · g

H1(m)
1 , σi

)
, i ∈ [M ]

π ←
M∏
i=1

ξi

η ← H2(π)⊕ σM+1

τ ← H3(η∥m)

if π = ê

(
g1,

M∏
i=1

pki,2

)τ

return 1

else

return 0

Figure 1. The multi-signature scheme MulSig.

In the next section we justify that the scheme MulSig is euf-cma-secure. The

proof is made under the assumption that H1 is modeled as a random oracle,

meaning that it is unreal perfect mixing function.

4. Security proof

Theorem 3. Let A be a euf-cma-adversary against MulSig in the random

oracle model which makes at most q queries to H1. Then there exists a q-BDHI3-

adversary B with advantage

Advq-BDHI3
n (B) ≥ q−1 ·Adveuf-cma

Π,n (A)

and a running time O(time(A)).



590 M. Jurkiewicz

Proof. At first, we reduce the security of MulSig to hardness of the

(q, 1)-BDHI3 problem. To this end, let A be an adversary, which attacks

the scheme MulSig, and assume there are given parameters of (q, 1)-BDHI3, con-

sisting of three cyclic groups G1,G2 and GT of prime order p, a Type 3 pairing

ê : G1 × G2 → GT , and generators gi ∈ Gi with i,= 1, 2. We shall construct

an algorithm B′ that uses A as a subroutine, and is aimed to attack (q, 1)-BDHI3.

Therefore, according to the model, it obtains
{
gi, g

α
i , . . . , g

αq

i ; gβ2 , g
βα
2 , . . . , gβα

q

2

}
,

i = 1, 2, on input, and must return the value ê(g1, g2)
β
α . Since the adversary A

serves as a black-box, the algorithm B′ has to perfectly pretend the signing oracle;

that is, the view of A when run by B′ is identically distributed to the view of

A in Expeuf-cma
A,MulSig. Let M ≥ 2 denote the number of signers.

Setup. The simulator sets the parameters params := (G1,G2,GT , p, g̃i, ê,

Hashes), where Hashes = {H1, H2, H3} are as in Section 3 and g̃i will be de-

fined below (see (4)). These parameters will be sent to A. The hash function H1

is modeled as a random oracle, and is able to be queried q := qH1
times by A.

In order to properly simulate the random oracle, elements w0, w1, . . . , wq−1
$← F⋆

p

are chosen uniformly at random, and they will be served as a pool of answers to

the oracle queries. Having done this, we define a polynomial W ∈ Fp[x] as follows

W (x) = (x+ w1)(x+ w2) · · · (x+ wq−1) =

q−1∏
i=1

(x+ wi).

It turns to be useful to write the polynomial W as

W (x) =

q−1∑
i=0

aix
i, where ai ∈ Fp.

Now, the generators g̃i can be defined; for i = 1, 2 we have

g̃i := (gi)
a0 · (gαi )

a1 · · ·
(
gα

q−1

i

)aq−1

= g
∑q−1

i=0 aiα
i

i = g
W (α)
i .

Note that if g̃i = 1Gi
, then 1Gi

= g0i = g
∏q−1

i=1 (wi+α)
i and there is easily derivable

i0 such that wi0 = −α.

The simulator chooses s2, r2, . . . , sM , rM
$← F∗

p, and sets the secret keys as

sk1 = (sk1,1, sk1,2) = (α− w0, β),

skj = (skj,1, skj,2) = (sj , rj), for j = 2, . . . ,M



A provable M-of-N signature scheme based on the BDHI-type . . . 591

It should be born in mind that the exact values of α and β are hidden from

the simulator, and, in particular, the values of sk1,1 and sk1,2 are unknown

too. On the other hand, the simulator has full knowledge about remaining keys

sk2, . . . , skM . Despite the drawback as for sk1, it is possible to derive the associ-

ated public key.

pk1,1 = g̃
sk1,1
1 = g̃α−w0

1 = g
α·W (α)
1 · g̃−w0

1 .

It is easily seen that it is possible to compute the value of g̃−w0
1 . For the first

component of the above product, we have

g
α·W (α)
1 = (gα1 )

a0 · (gα
2

1 )a1 · · · (gα
q

1 )aq−1 .

As gα
i

1 ’s and wi’s are known, g
α·W (α)
1 is explicitly computable In the similar

fashion we obtain

pk1,2 = g̃r2 =
(
gβ2

)a0

·
(
gβα2

)a1

· · ·
(
gβα

q−1

2

)aq−1

= g
βW (α)
2 .

Therefore, formally, the simulator sets the public keys as

pk1 = (pk1,1, pk1,2) =
(
g
α·W (α)
1 · g̃−w0

1 , g
βW (α)
2

)
,

pkj = (pkj,1, pkj,2) = (g
sj
1 , g

rj
2 ), for j = 2, . . . ,M.

H1-Query. The adversary A makes hash queries in this phase. Before getting

any query, the simulator chooses k∗
$← [0, q]. Having done this it prepares a hash

list L to record all queries and responses as follows

(1) At the beginning, the list L is empty;

(2) Let mk be an k-th query to H1:

(a) If mk has been already asked about, then the list L1 consists of a pair

(mk, H1(mk)) and, in this case, the simulator outputs H1(mk).

(b) Otherwise, there are considered two cases:

(i) If k = k∗, then (mk∗ , w0) is appended to the list L1 and

H1(mk∗) = w0 is given on output.

(ii) If k ̸= k∗, then then (mk, w0+wk̂), where k̂ := k−k∗ (mod q), is

appended to the list L1 and H(mk) = w0+wk̂ is given on output.



592 M. Jurkiewicz

Query. The adversary A makes signature queries in this phase. For a signature

query on mk, if k = k∗ then abort. Otherwise, H(mk) = w0 + wk̂ and since

the simulator knows secret keys sk2, . . . skM then associated tj ’s are computed

according to Sign.Round1skj algorithm

tj,k = g̃
1

sj+w0+w
k̂
·rj

2 .

Although the simulator does not know the exact values of sk1,1 and sk1,2, it is

also possible to derive t1,k. By (4), we have

g̃β2 =
(
gβ2

)a0

·
(
gβα2

)a1

· · ·
(
gβα

q−1

2

)aq−1

= g
βW (α)
2 ,

thus

t1,k = g̃
1

sk1+H1(mk)
·sk1,2

2 = g̃
1

α+w
k̂
·β

2 = g
W (α)
α+w

k̂
·β

2 .

Let us put

Wk̂(x) :=
W (x)

x+ wk̂

=
1

x+ wk̂

·
q−1∏
i=1

(x+ wi) =

q−1∏
i=1
i ̸=k̂

(x+ wi).

It is seen that there are easily computable bi’s, such that we have

Wk̂(x) =

q−2∑
i=0

bix
i.

This implies that t1,k has the following form

t1,k = g
βWk̂(α)
2 =

q−2∏
i=0

(
gβα

i

2

)bi
.

In a second step, the simulator chooses nonce
$← {0, 1}n and finds a value of H3

at a concatenation nonce∥mk, we get

ρ← H3(nonce∥mk).

Eventually, the simulator computes

σj,k ← tρj,k, for j = 1, . . . ,M,

σM+1,k ← nonce ⊕H2

(
ê(g1, g

β
2 · g

r2
2 · · · g

rM
2 )ρ

)
.

The tuple ({σj,k}j∈[M ], σM+1,k) is a valid forgery on mk and is sent to A.



A provable M-of-N signature scheme based on the BDHI-type . . . 593

Forgery. The adversary A outputs a forged signature σ∗ = ({σ∗
j }j∈[M ], σ

∗
M+1)

on a message m∗ that has not been queried. If m∗ ̸= mk∗ , abort. Otherwise,

we have H1(m
∗) = w0. According to the simulation, the first component of σ∗ is

of the form

σ∗
1 =

(
g̃

1
sk1,1+H1(m∗)

·sk1,2
2

)ρ

=

(
g̃

β
α
2

)ρ

=

(
g

βW (α)
α

2

)ρ

.

Launching the verification algorithm Vrfy, it is easy to compute ρ; having this

we obtain

t∗1 := (σ∗
1)

1
ρ = g

βW (α)
α

2 .

These values are used to get

Eα,1 = ê (g̃1, t
∗
1) = ê

(
g
W (α)
1 , g

βW (α)
α

2

)
= ê (g1, g2)

βW2(α)
α .

Note that Eα,1 differs from the required solution of (q, 1)-BDHI3 problem and

must be reformulated to the most suitable form. To this end, we let

˜̃g1,1 := (g1)
a1 · (gα1 )

a2 · · ·
(
gα

q−2

1

)aq−1

= g
∑q−2

i=0 ai+1α
i

1 = g
W (α)−a0

α
1 .

Further define (see also (4))

Eα,2 = ê
(
˜̃g1, g̃

β
2 · (g

β
2 )

a0

)
.

Since g̃β2 · (g
β
2 )

a0 = g
β(W (α)+a0)
2 , so we use the bilinearity of ê to get the following

conditions

Eα,2 = ê (g1, g2)
β(W2(α)−a2

0)

α = ê (g1, g2)
βW2(α)−βa2

0
α

Finally, in order to obtain the solution of (q, 1)-BDHI3, it is just sufficient to

divide Eα,1 by Eα,2. Indeed, the simulator B′ computes(
Eα,1

Eα,2

) 1
a0

= ê (g1, g2)
β
α

as the solution to the (q, 1)-BDHI3 problem instance.



594 M. Jurkiewicz

Probability of successful simulation. If the simulator B′ successfully guesses

k∗, then all signatures queried by A are simulatable, and signature forgery is

made on the message m∗. Therefore, the probability of breaking the problem

(q, 1)-BDHI3 is q−1 for q = qH1 queries.

To sum up, we have shown that there exists a (q, 1)-BDHI3-adversary B′ with
advantage

Adv(q,1)-BDHI3
n (B′) ≥ g−1 ·Adveuf-cma

MulSig,n(A).

The running time of B′ is O(time(A)). By Lemma 1, there is an adversary B,
with essentially the same running time as B′, and such that

Advq-BDHI3
n (B) ≥ Adv(q,1)-BDHI3

n (B′).

Then, as an immediate consequence of these estimates, we obtain

Adveuf-cma
MulSig,n(A) ≤ q ·Advq-BDHI3

n (B).

This finishes the proof. □

Conclusion 1. Since the q-BDHI3 problem is computationally hard, then

Advq-BDHI3
n (B) ≤ negl(n), therefore Adveuf-cma

MulSig,n(A) is negligible as well. This

implies that MulSig is euf-cma-secure according to Definition 2.

References

[1] A. M. Antonopoulos, Mastering Bitcoin: Programming the open blockchain, O’Reilly
Media, Inc., 2017.

[2] M. Bellare and G. Neven, Multi-signatures in the plain public-key model and a general

forking lemma, In: Proceedings of the 13th ACM conference on Computer and communi-

cations security, 2006, 390–399.

[3] D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption without

random oracles, In: International conference on the theory and applications of crypto-
graphic techniques, 223–238.

[4] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven and I. Stepanovs,

On the security of two-round multi-signatures, In: 2019 IEEE Symposium on Security and

Privacy (SP), 2019, 1084–1101.

[5] S. Goldwasser, S. Micali and R. L. Rivest, A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks, SIAM J. Comput. 17, no. 2 (1988), 281–308.

[6] F. Guo, W. Susilo and Y. Mu, Introduction to security reduction, Springer, 2018.

[7] K. Itakura and K. Nakamura, A public-key cryptosystem suitable for digital multisigna-
tures, NEC Research & Development 71 (1983), 1–8.



A provable M-of-N signature scheme based on the BDHI-type . . . 595

[8] G. Maxwell, A. Poelstra, Y. Seurin and P. Wuille, Simple schnorr multi-signatures
with applications to bitcoin, Designs, Codes and Cryptography 87, no. 9 (2019), 2139–2164.

[9] S. Micali, K. Ohta and L. Reyzin, Accountable-subgroup multisignatures, In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security, 2001,

245–254.

[10] M. Michels and P. Horster, On the risk of disruption in several multiparty signature

schemes, In: International Conference on the Theory and Application of Cryptology and
Information Security, 1996, 334–345.

[11] A. Poelstra, Musig: A new multisignature standard, 2019,
https://blockstream.com/2019/02/18/musig-a-new-multisignature-standard/.

[12] C.-P. Schnorr, Efficient signature generation by smart cards, Journal of cryptology 4, no.

3 (1991), 161–174.

[13] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi and B. Ford, Keeping authorities “honest or bust” with decentralized witness
cosigning, In: 2016 IEEE Symposium on Security and Privacy (SP), 2016, 526–545.

MARIUSZ JURKIEWICZ

DEPARTMENT OF CYBERNETICS

MILITARY UNIVERSITY OF TECHNOLOGY

2 GEN. S. KALISKI ST, WARSAW

POLAND

E-mail: mariusz.jurkiewicz@wat.edu.pl


