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Using GeMSS128 in a ring signature scheme

By Viliam Hromada and Daniela Leščinská

Abstract. In this paper, we investigate the possibility of using the multivariate

GeMSS signature scheme as the building block of a ring signature scheme. Namely,

we determine a set of parameters which provide 128-bit level of security for different

numbers of ring’s participants. We also provide performance measurements and compare

this ring signature scheme with a similar one which uses the Rainbow signature scheme

as its building block instead.

1. Introduction

Currently, nearly all used public-key cryptographic primitives are based ei-

ther on the problem of integer factorization or the discrete-logarithm problem.

Both of these problems could be solved in polynomial time on a quantum com-

puter using the Shor’s algorithm [16]. Therefore, as an answer to the need for

new quantum-secure cryptographic algorithms, the Post-Quantum Cryptography

Standardization was launched by NIST in 2016 with the goal of identifying suit-

able candidates for quantum-secure public-key cryptographic algorithms. These

algorithms would have to be based on mathematical problems not affected by

quantum computers.

One of these problems is the problem of solving a system of multivariate

non-linear equations over a finite field. Cryptographic algorithms, whose security

is built on this problem, are termed multivariate cryptography [6]. This area

provides promising candidates, especially in the field of digital signatures. The
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third round of the NIST NQC project included two multivariate digital signature

algorithms: Rainbow [7], and as an alternative candidate GeMSS [4]. Both are

standard digital signature algorithms, i.e., one entity generates a signature and

another may verify it. However, more advanced signature schemes are also needed

in practice, e.g., a ring signature scheme.

A ring signature scheme is a signature scheme where a user can sign messages

anonymously as a member of some groupR. The verifier can verify, whether a sig-

nature was generated by a member of the group R, but cannot reveal the identity

of the signer. In 2017, Mohamed and Petzoldt proposed an efficient multivariate

ring signature scheme [11] with a simple design that allows the participants to

use an arbitrary standard multivariate signature scheme as a building block.

In this ring signature scheme, each member of the group R generates an in-

stance of a private and a public key of some multivariate signature scheme. The

original proposal of [11] uses the multivariate signature scheme Rainbow. In our

work, we investigate the possibility of using GeMSS as the main building block.

A similar work has been already done by Demircioglu et. al. in [5]. However,

the mentioned paper only proposes the usage of GeMSS and omits any concrete

performance results or a proposal of parameter values to achieve desired levels

of security. We propose parameters for using GeMSS in a ring signature scheme

with 128 bits of security and we also give the performance results.

The structure of this paper is as follows. In Section 2, we summarize the

ring signature scheme presented in [11] and GeMSS signature scheme [4]. In

Section 3, we determine a set of parameters for GeMSS128 to achieve 128 bits

of security for a different number of participants. In Section 4 we present the

resulting performance of the scheme and we conclude the paper in Section 5.

2. Preliminaries

In multivariate public-key cryptosystems, the public key is usually a system of

m quadratic multivariate polynomials of n indeterminates (x1, ..., xn) over a finite

field Fq of q elements, i.e.,

p(1)(x1, x2, ..., xn) =
∑

1≤i≤j≤n

a
(1)
ij xixj +

∑
1≤i≤n

b
(1)
i xi + c(1),

...

p(m)(x1, x2, ..., xn) =
∑

1≤i≤j≤n

a
(m)
ij xixj +

∑
1≤i≤n

b(m)xi + c(m),
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where a
(k)
ij , b

(k)
i , c(k) ∈ Fq, 1 ≤ k ≤ m. The problem of solving such a quadratic

system is called the MQ-problem and is known to be NP-hard [9]. In order to

construct a digital signature based on the MQ-problem, one starts with an easily-

invertible polynomial system f : Fn
q → Fm

q , also called the central map. Next,

the structure of the central map f, which allows its inversion, is hidden by two

invertible affine maps T : Fm
q → Fm

q and S : Fn
q → Fn

q to produce the resulting

public key in the following way:

P = T ◦ f ◦ S : Fn
q → Fm

q .

The public key is then the system P of m polynomials of n indeterminates,

the triplet (T , f,S) forms the private key.

2.1. GeMSS Signature Scheme. GeMSS [4] is a multivariate signature algo-

rithm chosen as an alternative candidate in the third round of the NIST PQC

project.

Key generation. In order to generate a private key, one first generates a random

polynomial F of degree D over some n-th degree extension F2n of the finite field

F2. The polynomial F is of the form:

F (X, v1, ..., vv) =
∑

0≤j<i<n
2i+2j≤D

Ai,jX
2i+2j +

∑
0≤i<n
2i≤D

βi(v1, ..., vv)X
2i + γ(v1, ..., vv),

where the indeterminates (X, v1, ..., vv) ∈ F2n × F2 × ... × F2, the coefficients

Ai,j ∈ F2n , the mappings βi : Fv
2 → F2n are linear and the mapping γ : Fv

2 → F2n

is quadratic. The indeterminates (variables) (v1, ..., vv) are called the vinegar in-

determinates (variables). After assigning values to these vinegar indeterminates,

we obtain a polynomial of the form

Fv(X) =
∑

0≤j<i<n
2i+2j≤D

A′
i,jX

2i+2j +
∑

0≤i<n
2i≤D

B′
iX

2i + C ′,

which is a univariate polynomial over the field F2n , A
′
i,j , B

′
i, C

′ ∈ F2n and whose

roots can be found by Berlekamp’s algorithm [2] or by the Cantor–Zassenhaus

algorithm [3], provided that the degree D is sufficiently small.

Further, let ϕ be an isomorphism ϕ : Fn
2 → F2n and let ψ = ϕ × idv :

Fn+v
2 → F2n × Fv

2, such that if v = 0, then ϕ = ψ. Let f be the composition
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f = ϕ−1◦F◦ψ, then f is a system of n quadratic polynomials of n+v indeterminates

over F2, f : Fn+v
2 → Fn

2 .

To hide the structure of the quadratic mapping f, GeMSS uses two ran-

dom invertible linear mappings (S, T ) ∈ GLn+v(F2) × GLn(F2). The public

key is then the composition P = T ◦ f ◦ S with last ∆ polynomials removed:

P : (F2)
n+v → (F2)

n−∆:

p(1)(x1, x2, ..., xn+v) =
∑

1≤i<j≤n+v

a
(1)
ij xixj +

∑
1≤i≤n+v

b
(1)
i xi + c(1),

...

p(n−∆)(x1, x2, ..., xn+v) =
∑

1≤i<j≤n+v

a
(n−∆)
ij xixj +

∑
1≤i≤n+v

b(n−∆)xi + c(n−∆),

where a
(k)
ij , b

(k)
i , c(k) ∈ F2, 1 ≤ k ≤ n−∆.

Signature Generation. Suppose d ∈ {0, 1}∗ is a document to be signed.

(1) Let H : {0, 1}∗ → Fn−∆
2 be a hash function with output length n −∆. Use

it to compute w = H(d), i.e., the hash w of the document d.

(2) Generate ∆ random values r = (r1, ...., r∆) ∈ F∆
2 and append them to w to

create w’ = (w, r1, ..., r∆) ∈ Fn
2 .

(3) Compute y = T −1(w’) and lift the binary vector y to the extension field

F2n , i.e., Y = ϕ(y).

(4) Randomly choose v = (v1, ..., vv) ∈ Fv
2 and substitute them into the vine-

gar variables of F to obtain a univariate polynomial Fv of the form (2),

i.e., Fv(X) = F (X,v).

(5) Find a root Z of the polynomial Fv(X) − Y = 0, e.g. by Berlekamp’s

algorithm. If such a root does not exist, go back to step (2).

(6) Set z = ψ−1(Z,v) ∈ Fn+v
2 .

(7) Set s = S−1(z). Then s ∈ Fn+v
2 is the corresponding digital signature of d.

Signature Verification. Suppose d ∈ {0, 1}∗ is a document and s ∈ Fn+v
2 its

corresponding signature.

(1) Let H : {0, 1}∗ → Fn−∆
2 be a hash function with output length n −∆. Use

it to compute w = H(d), i.e., the hash w of the document d.

(2) Check if w
?
= P(s). If yes, the signature has been verified. Otherwise, the

signature has been rejected.
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The relation between the signature s and the signed hashw, can be visualized

as follows:

F2n × Fv
2 F2n

Fn+v
2 Fn

2 Fn
2 Fn−∆

2Fn+v
2s w

F

f

ϕ−1ψ

T −∆S

P

Figure 1. The relation between the signature s and the signed hash w

2.2. Ring Signature Scheme. Ring signature schemes were first proposed by

Rivest et. al. in 2001 [14]. A ring signature scheme is a signature scheme which

allows a signer to sign messages anonymously on behalf of some group of members

R. The verifier can verify, whether the signature was generated by a member of

the group R, but cannot reveal the identity of the signer, nor there exists any

group manager, who is able to reveal the identity of the signer (as opposed to the

group signatures).

A number of multivariate ring signature schemes have been proposed in re-

cent years, e.g. the scheme by Wang [19] or by Wang et. al. [20]. The former

is based on the multivariate identification scheme by Sakumoto et. al [15], but

unfortunately, enables the adversary to forge a signature with probability 2
3 . The

latter scheme enables to construct a ring signature scheme from a standard mul-

tivariate signature scheme. Due to this design, the security of the scheme is based

on the security of the underlying multivariate signature.

In 2017, a multivariate ring signature scheme was proposed by Mohamed and

Petzoldt in [11], which similarly to [20] allows the participants to use an arbitrary

standard multivariate signature scheme as a building block, but has a simpler

design and faster signature generation and verification. Next, we describe this

scheme, as presented in [11].

Let R = {u1, u2, ..., uk} be a ring of users.

Key generation. Each user ui generates a key-pair ((Ti, fi,Si),Pi) of some under-

lying standard multivariate digital signature scheme. The public key of the ring
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is the concatenation of all individual public keys, i.e., P = P1||P2||...||Pk, while

each user ui keeps (Ti, fi,Si) as his private key ski. Generally, let each public

key Pi be a system of m polynomials in n indeterminates over a finite field F,
Pi : Fn → Fm.

Ring signature generation. In order to sign a message d on behalf of the ring R,

the user ui uses a hash function H to compute the hash value w = H(d) ∈ Fm of

the message. Then he chooses k − 1 random vectors z1, z2, ..., zi−1, zi+1, ..., zk ∈
Fn and computes

w̃ = w−
k∑

j=1
j ̸=i

Pj(zj) ∈ Fm

and uses his private key to compute a vector zi ∈ Fn such that Pi(zi) = w̃. The

ring signature of the message d is then (z1, z2, ..., zk) ∈ Fkn.

Ring signature verification. In order to verify if (z1, z2, ..., zk) ∈ Fkn is a signature

of the message d, the verifier computes the hash value w = H(d) ∈ Fm of the

message d and uses the public keys P1, ...,Pk to compute

ŵ =

k∑
j=1

Pj(zj) ∈ Fm.

If ŵ = w holds, then the signature is accepted, otherwise it is rejected.

Security of the ring signature scheme. The basic security criteria of a ring signa-

ture scheme are anonymity and unforgeability:

• Anonymity: The receiver of the signed message should not be able to reveal

the actual identity of the signer.

• Unforgeability: Given a message d, an adversary A not belonging to the ring

R of legitimate signers is not able to forge a valid ring signature for the

message d on behalf of the ring R.

The authors prove in their paper [11] that this ring signature scheme provides

perfect anonymity, i.e., the ring signature contains no information, which mem-

ber of the ring generated the signature and even a computationally unrestricted

adversary can not reveal the identity of the signer.

In order to forge a signature of a message with hash w on behalf of a ring

R = {u1, ..., uk} of signers, the attacker has to find a solution (z1, z2, ..., zk) of

the equation

P1(z1) + P2(z2) + ...Pk(zk) = w.
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There are two approaches to do it:

(1) The first approach is to randomly generate (z1, z2, ..., zk−1), compute w̃ =

w−
∑k−1

i=1 Pi(zi) and try to find a solution of Pk(zk) = w̃. This is an equiv-

alent of breaking the underlying standard multivariate signature scheme.

(2) The second approach is to solve the system (3) directly as an undetermined

system of multivariate equations.

The second approach is not as difficult as the first one, i.e., breaking the underlying

scheme. This is due to the fact that the system (2.2) is a highly undetermined

system – and the higher the number k of participants in the ring, the higher the

number of variables in the system (2.2). For systems of equations of this type,

there are two important results we have to consider [11]:

(1) If the number of variables n in an undetermined multivariate quadratic sys-

tem P of m equations is given by n = ω ·m, then a solution of the system P
can be found in the same time as finding a solution of a determined system

of m− ⌊ω⌋+ 1 equations [18].

(2) If the number of variables n in the multivariate quadratic system P of m

equations exceeds n ≥ m(m+3)
2 , P can be solved in polynomial time [10].

3. GeMSS ring signature scheme parameters

Originally, the authors of [11] instantiate the ring signature scheme with the

signature scheme Rainbow as its building block and propose a set of parameters

to achieve 80, 100 and 128-bit level of security for rings of 5, 10, 20 and 50 users.

In this paper, we propose a set of parameters for GeMSS to be used in this ring

signature scheme to achieve 128-bit level of security for rings of 5, 10, 20 and 50

users. The parameters have to fulfil two conditions:

(1) Each instance of GeMSS must be secured at the desired level of security,

i.e., 128 bits.

(2) The resulting system of m equations of nk variables (3) must have a com-

plexity of solving as at least a determined system of m−⌊nk
m ⌋+1 equations,

i.e., 128 bits.

3.1. Security of one instance of GeMSS. GeMSS has four parameters, which

influence its security:

• n, the degree of the field extension of F2;

• D, the degree of the private-key polynomial F ;
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• ∆, the number of removed polynomials during the public-key generation;

• v, the number of vinegar variables in the private-key polynomial F .

In the 3rd round of NIST PQC project, there are three main sets of parame-

ters for GeMSS proposed [4], offering 128, 192 and 256 bits of security. They are

summarized in Table 1.

Version (n,D,∆, v) polynomials (n−∆) indeterminates (n+ v)

GeMSS128 (174, 513, 12, 12) 162 186

GeMSS192 (265, 513, 22, 20) 243 285

GeMSS256 (354, 513, 30, 33) 324 387

Table 1. GeMSS parameters as proposed in [4]

These parameters have been chosen so that each known attack, either di-

rectly aimed at solving a system of quadratic multivariate equations over F2, or

aimed at finding the private-key, should have a complexity of at least 2128, 2192

and 2256, respectively. The supporting documentation of GeMSS [4] contains a

treatment of possible attacks (at the time of publication) and their correspond-

ing complexities, which have to be taken into account when determining a set of

parameters. We will list those that are essential to determine the parameters.

First attack is aimed at solving a system of non-linear boolean equations using

the BooleanSolve algorithm [1]. For a system of m equations and m variables,

the Las-Vegas variant of this algorithm has an expected complexity of

O(20.792·m)

and is used as the reference approach to determine the minimal number of poly-

nomials m used in the public key of GeMSS.

Second attack to consider, which is again aimed at solving a system of non-

linear equations, is performed by using the F5 algorithm for finding the Gröbner

basis of a non-linear system of equations [8]. The complexity of this approach can

be bounded by

O

((
m

Dreg

)2
)
,

where Dreg is the degree of regularity of the corresponding non-linear system. In

the case of GeMSS, the degree of regularity of the public-key can be estimated

[13] as

Dreg ≥
⌊
⌊log2(D − 1)⌋+ 1 +∆+ v + 7

3

⌋
.
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Relations (3.1), (3.1) show the importance of the degree D of the private-

key polynomial F , the number of vinegar variables v and the number of removed

polynomials ∆ in the security of GeMSS, since they all increase the degree of

regularity and the complexity of the attack using the F5 algorithm.

It can be seen that parameters presented in Table 1 follow these rules to

achieve the desired level of security. However, in 2021, a new key recovery attack

on GeMSS was published by Tao, et. al. [17], which shows that GeMSS is not

as secure as claimed. The attack falls into the category of so-called MinRank

attacks. Without going into too much detail, the complexity of the attack using

the support minors modelling is

O

(
(n+ v)2

(
2d+ 2

d

)
+ (n+ v)

(
2d+ 2

d

)2
)ω

,

where d = ⌊log2(D)⌋ and ω is the linear algebra constant. Using the value

ω = 2.81, the complexity of this attack is 2118 for GeMSS128, 2120 for GeMSS192

and 2121 for GeMSS256, which means that all sets of parameters presented in

Table 1 are not as secure as declared. The simplest way to thwart this type of

attack is to increase the value of D, which unfortunately increases the signature

generation time.

However, also in 2021, a projection modifier of GeMSS was proposed by

Øygarden, et. al. [12], which could be useful in protecting GeMSS against the

rank attack presented in [17]. The idea of the modifier is to project the signature

space Fn+v
2 to a subspace of lower dimension, Fn+v−p

2 , according to a parameter p.

Implementationally, this means that the signing algorithm is virtually the same,

however, the signature s is accepted only if its last p coordinates are all zero.

That means, that in this case, the whole signature process is repeated on average

2p times. The positive side of this modification is that the degree D of the secret

polynomial F can be kept at the original value as proposed by authors of GeMSS.

The complexity of the rank attack on projected GeMSS is estimated to be [12]:

O

(
(n+ v)2

(
n′

d+ p

)
+ (n+ v)

(
n′

d+ p

)2
)ω

,

where d = ⌈log2(D)⌉, n′ =
⌈
(n+v)(d+p+1)

n−∆

⌉
+ d+ p+ 1 and ω is the linear algebra

constant.

3.2. Security of the ring signature scheme using GeMSS. As mentioned

earlier, in order to forge a signature, the attacker does not have to break the
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underlying GeMSS instance, he can try to solve the system (2.2) directly. If

the GeMSS instance used leads to a public key of m polynomials and n + v

indeterminates (n+ v − p indeterminates in the case of projected GeMSS), then

to forge a signature in a ring of k users, the attacker would have to solve a

system of m equations with k(n+ v) variables. Due to the result of [18], solving

this underdetermined system has the same complexity as solving a system of

m− ⌊k(n+v)
m ⌋+ 1 equations.

The best approach to solve such a system is to use the BooleanSolve algo-

rithm, which in the case of unprojected GeMSS would have a complexity of

O(20.792·(m−⌊ k(n+v)
m ⌋+1)))

and in the case of projected GeMSS would have a complexity of

O(20.792·(m−⌊ k(n+v−p)
m ⌋+1))).

We see that the higher the number of participants k, the greater the difference

between the number of variables k(n + v) or k(n + v − p) and the number of

equations m, which negatively influences the security. Therefore, the parameters

have to scale with the number of participants.

3.3. Parameter estimation. Aggregating the results and complexities of dif-

ferent attacks presented in the preceding two subsections, we have chosen the

following sets of parameters to construct a ring signature scheme, which uses

GeMSS128 as its building block and has 128 bits of security. We propose 4 differ-

ent sets of parameters according to the maximum number of users that may form

a ring, k ∈ {5, 10, 20, 50} and still attain the 128-bit security. We also propose two

versions of parameters for GeMSS128 - without and with the projection modifier.

In the unprojected version of GeMSS128, we increased value of the degree

D of the secret polynomial F to D = 211 + 1 = 2049, in order to thwart the

rank attack presented in [17]. Also, due to the increasing number of participants

in the ring, the original number of polynomials in the public-key m = 174 has

to be gradually increased to maintain the level of security at 128 bits. To do

this, we increased the parameter n, which in turn influenced both the number of

polynomials and the number of indeterminates in the public key, so that not only

each instance of GeMSS128 would have a security of 128 bits, but also the system

(2.2) would have a complexity of solving at least 2128 for each considered number

of ring participants. We were able to decrement the value of parameters v and

∆ for 20 and 50 participants and still keep the desired security level. We present
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the parameters in Table 2 along with the estimated log2 complexities of presented

attacks.

k 5 10 20 50

D 2049 2049 2049 2049

(n,∆, v) (178, 12, 12) (184, 12, 12) (194, 11, 11) (227, 11, 11)

log2 of (3.1) 131 136 144 171

log2 of (3.1) 138 140 136 143

log2 of (3.1) 140 140 141 141

log2 of (3.2) 128 128 128 128

Table 2. Parameters for the unprojected GeMSS128 with attack complexities

Table 3 contains parameters for a ring signature scheme based on GeMSS128

using the projection modifier [12]. In this case, we used the results presented in

[12] suggesting that using the projection modifier with value p = 2 allows to keep

the degree D of the secret polynomial F at D = 29+1 = 513 for 128-bit security.

k 5 10 20 50

D 513 513 513 513

(n,∆, v, p) (178, 12, 12, 2) (184, 12, 12, 2) (194, 11, 11, 2) (227, 11, 11, 2)

log2 of (3.1) 131 136 144 171

log2 of (3.1) 132 133 129 135

log2 of (3.1) 135 135 136 136

log2 of (3.2) 128 128 128 129

Table 3. Parameters for the projected GeMSS128 with attack complexities

4. Experiments

To measure the performance of the ring signature scheme built on top of

GeMSS128 with parameters presented in the previous section, we have imple-

mented the ring signature scheme in C language. We have implemented all pre-

sented variants, e.g. for 5, 10, 20 and 50 participants and compared the versions

with/without projection modifier. We have also implemented the ring signature

scheme which uses Rainbow as its building block and compared this scheme with

GeMSS-based scheme as well. All implementations used in the experiments can

be found at https://uim.fei.stuba.sk/en/pracovnici/viliam-hromada/.
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We have used the optimized implementation of GeMSS128, which is avail-

able at the website of the 3rd round of the NIST PQC https://csrc.nist.gov/

Projects/post-quantum-cryptography/round-3-submissions. We have used

the optimized implementation of Rainbow, which is available at the website of the

2nd round of the NIST PQC https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-2-submissions.

We have measured the signature generation time and the signature veri-

fication time for each set of parameters for k = 5, 10, 20, 50 members of the

ring. Measurements were repeated 100 times and averaged, and were performed

on a laptop with the following specification: Intel Core i7-3630QM@2.40GHz

CPU, 8GB RAM, Ubuntu 18.04.01, GCC 7.5.0. The compilation was made with

the following GCC flags: -O4 -msse2 -msse3 -msse4.1 -mpclmul -mpopcnt

-funroll-loops.

Ring signature with GeMSS128 without projection. Table 4 summarizes

the resulting average times for signature generation, signature verification, along

with the sizes of ring public key and the ring signature for ring signature scheme

which uses GeMSS128 without projection as its building block.

k 5 10 20 50

D 2049 2049 2049 2049

(n,∆, v) (178,12,12) (184,12,12) (194,11,11) (227,11,11)

PK size [KB] 1,883 4,151 9,661 38,397

Sig size [b] 1,320 2,720 5,440 15,200

Sig gen [s] 6.47 7.02 12.34 12.44

Sig ver [ms] 0.8 1.4 3.0 10.0

Table 4. Ring signature using GeMSS128 without projection

Ring signature with GeMSS128 with projection. Table 5 summarizes the

resulting average times for signature generation, signature verification, along with

the sizes of ring public key and the ring signature for ring signature scheme which

uses GeMSS128 with projection as its building block.

Ring signature with Rainbow. Table 6 summarizes the resulting average

times for signature generation, signature verification, along with the sizes of ring

public key and the ring signature for ring signature scheme which uses Rainbow

as its building block. The parameters of Rainbow for different ring sizes were

taken from the paper [11].
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k 5 10 20 50

D 513 513 513 513

(n,∆, v, p) (178,12,12,2) (184,12,12,2) (194,11,11,2) (227,11,11,2)

PK size [KB] 1,843 4,067 9,473 37,755

Sig size [b] 1,300 2,660 5,380 15,100

Sig gen [s] 3.64 4.08 6.22 7.06

Sig ver [ms] 0.8 1.4 3.0 9.4

Table 5. Ring signature using GeMSS128 with projection

Rainbow F256 k = 5 k = 10 k = 20 k = 50

(v1, o1, o2) (36,23,20) (34,26,23) (32,33,29) (30,64,58)

PK size [KB] 680 1,708 5,522 70,180

Sig size [b] 3,160 6,640 15,040 60,800

Sig gen [s] 0.001 0.003 0.010 0.103

Sig ver [ms] 1.2 3.0 9.6 105

Table 6. Ring signature using Rainbow (parameters from [11])

Discussion. As can be seen from the results, if we compare the ring signature

scheme built upon GeMSS128 without projection and the ring signature scheme

built upon GeMSS128 with projection, clearly the largest difference is the faster

signature generation in the projected version. This is of course due to the fact

that the degree D of the secret polynomial is D = 513 in the projected version

and D = 2049 in the unprojected version. This degree plays an important part

in the complexity of the signature generation, as it influences the complexity of

the Berlekamp’s factorisation algorithm. Therefore performance-wise, the rec-

ommendation is clearly to use the projected version of GeMSS digital signature

scheme.

When comparing GeMSS and Rainbow (with parameters taken from [11]), for

rings of smaller sizes, e.g. 5, 10 or 20 users, clearly Rainbow-based ring signature

scheme offers advantages over GeMSS-based ring signature scheme, due to lower

public-key size and much faster signature generation. However, GeMSS128 retains

its property of short signatures, since it can be seen that in all scenarios, the size

of ring-signature is smaller in the case of GeMSS-based construction, than in the

case of Rainbow-based construction.

Situation changes in the case of a large ring of 50 users, in which the size of the

public-key of Rainbow-based ring signature scheme is larger than the public-key
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of GeMSS-based ring signature scheme (approx. 70 MB vs. 38 MB). Also the size

of the ring signature is approximately four times larger in the Rainbow-based ring

scheme than in the GeMSS-based scheme. The difference in signature verification

is also more prominent in this case, since it takes approximately 10 milliseconds to

verify the ring signature in the case of GeMSS-based scheme and 100 milliseconds

to verify the ring signature in the case of Rainbow-based scheme. On the other

hand, Rainbow still retains its clear advantage in the signature generation time,

taking 103 milliseconds to generate the ring signature vs. 7 seconds it takes to

generate the ring signature using the GeMSS-based scheme.

5. Conclusions

In this paper, we propose a set of parameters that can be used in the

GeMSS128 signature scheme to create a ring signature scheme, which uses it

as its building block. The proposed set of parameters offer 128 bits of security

for rings up to 5, 10, 20 and 50 users. Due to the recent developments in the

cryptanalysis of this signature scheme, we propose two sets of parameters: one

version with the projection modifier and one without it. The measurements show

that the projected version offers performance advantage over the unprojected ver-

sion. We have also compared the GeMSS-based ring signature scheme with the

Rainbow-based ring signature scheme, which also offers 128 bits of security. The

experiments show that for smaller rings, Rainbow-based scheme offers advantages

in signature generation time and public-key sizes. However, in the case of a large

ring of 50 users, GeMSS-based ring scheme offers smaller public keys, smaller ring

signatures and faster signature verification, even though Rainbow-based scheme

still offers clear advantage in the signature generation time. The disadvantage

of proposed parameters is clearly the large value of the degree D of the secret

polynomial. This might be remedied by proposing a different set of parameters,

similar to RedGeMSS or BlueGeMSS [4], where the degree D is lower, but with

a larger value of the projection parameter p, which may be an interesting goal in

the future.
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